• Title/Summary/Keyword: binding isotherm

Search Result 36, Processing Time 0.026 seconds

Fate of Heavy Metals in Activated Sludge: Sorption of Heavy Metal ions by Nocardia amarae

  • Kim, Dong-wook
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 1998.10a
    • /
    • pp.2-4
    • /
    • 1998
  • Proliferation of Nocardia amarae cells in activated sludge has often been associated with the generation of nuisance foams. Despite intense research activities in recent years to examine the causes and control of Nocardia foaming in activated sludge, the foaming continued to persist throughout the activated sludge treatment plants in United States. In addition to causing various operational problems to treatment processes, the presence of Nocardia may have secondary effects on the fate of heavy metals that are not well known. For example, for treatment plants facing more stringent metal removal requirements, potential metal removal by Nocardia cells in foaming activated sludge would be a welcome secondary effect. In contrast, with new viosolid disposal regulations in place (Code o( Federal Regulation No. 503), higher concentration of metals in biosolids from foaming activated sludge could create management problems. The goal of this research was to investigate the metal sorption property of Nocardia amarae cells grown in batch reactors and in chemostat reactors. Specific surface area and metal sorption characteristics of N. amarae cells harvested at various growth stages were compared. Three metals examined in this study were copper, cadmium and nickel. Nocardia amarae strain (SRWTP isolate) used in this study was obtained from the University of California at Berkeley. The pure culture was grown in 4L batch reactor containing mineral salt medium with sodium acetate as the sole carbon source. In order to quantify the sorption of heavy metal ions to N amarae cell surfaces, cells from the batch reactor were harvested, washed, and suspended in 30mL centrifuge tubes. Metal sorption studies were conducted at pH 7.0 and ionlc strength of 10-2M. The sorption Isotherm showed that the cells harvested from the stationary and endogenous growth phase exhibited significantly higher metal sorption capacity than the cells from the exponential phase. The sequence of preferential uptake of metals by N. amarae cells was Cu>Cd>Ni. The specific surFace area of Nocardia cells was determined by a dye adsorption method. N.amarae cells growing at ewponential phase had significantly less specific surface area than that of stationary phase, indicating that the lower metal sorption capacity of Nocardia cells growing at exponential phase may be due to the lower specific surface area. The growth conditions of Nocardia cells in continuous culture affect their cell surface properties, thereby governing the adsorption capacity of heavy metal. The comparison of dye sorption isotherms for Nocardia cells growing at various growth rates revealed that the cell surface area increased with increasing sludge age, indicating that the cell surface area is highly dependent on the steady-state growth rate. The highest specific surface area of 199m21g was obtained from N.amarae cell harvested at 0.33 day-1 of growth rate. This result suggests that growth condition not only alters the structure of Nocardia cell wall but also affects the surface area, thus yielding more binding sites of metal removal. After reaching the steady-state condition at dilution rate, metal adsorption isotherms were used to determine the equilibrium distributions of metals between aqueous and Nocardia cell surfaces. The metal sorption capacity of Nocardia biomass harvested from 0.33 day-1 of growth rate was significantly higher than that of cells harvested from 0.5- and 1-day-1 operation, indicatng that N.amarae cells with a lower growth rate have higher sorpion capacity. This result was in close agreement with the trend observed from the batch study. To evaluate the effect of Nocardia cells on the metal binding capacity of activated sludge, specific surface area and metal sorption capacity of the mixture of Nocardia pure cultures and activated sludge biomass were determined by a series of batch experiments. The higher levels of Nocardia cells in the Nocardia-activated sludge samples resulted in the higher specific surface area, explaining the higher metal sorption sites by the mixed luquor samples containing greater amounts on Nocardia cells. The effect of Nocardia cells on the metal sorption capacity of activated sludge was evaluated by spiking an activated sludge sample with various amounts of pre culture Nocardia cells. The results of the Langmuir isotherm model fitted to the metal sorption by various mixtures of Nocardia and activated sludge indicated that the mixture containing higher Nocardia levels had higher metal adsorption capacity than the mixture containing lower Nocardia levels. At Nocardia levels above 100mg/g VSS, the metal sorption capacity of activate sludge increased proportionally with the amount of Noeardia cells present in the mixed liquor, indicating that the presence of Nocardia may increase the viosorption capacity of activated sludge.

  • PDF

Adsorption Characteristics of Aqueous Phosphate Using Biochar Derived from Oak Tree (참나무 바이오차의 인산염 인(PO4-P) 흡착특성)

  • Choi, Yong-Su;Hong, Seung-Gil;Kim, Sung-Chul;Shin, Joung-Du
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.3
    • /
    • pp.60-67
    • /
    • 2015
  • Objective of this study was to investigate adsorption characteristics of $PO_4-P$ to biochar produced from oak tree in respective to reduce eutrophication from runoff water in the cropland. For adsorption experiment, input amount of biochar was varied from 4 to 20 g/L with 30 mg/L $PO_4-P$ solution. Adsorption amounts and removal rates of $PO_4-P$ was increased at 3 times in 4~14 g/L, and increased at 28.6% in 4~16 g/L, respectively. The maximum adsorption amount ($q_m$) and binding strength constant(b) were calculated as 0.10 mg/g and 0.06 L/mg, respectively. The sorption of $PO_4-P$ to biochar was fitted well by Langmuir model because it was observed that dimensionless constant($R_L$) was 0.37. It was indicated that biochar is favorably adsorbed $PO_4-P$ because this value lie within 0 < $R_L$ < 1. Therefore, biochar produced from oak tree could be used as adsorbent for reduce eutrophication from runoff water in the cropland.

Effect of Immobilization Method in the Biosorption and Desorption of Lead by Algae, Chlorella pyrenoidosa (Chlorella pyrenoidosa에 의한 납 흡.탈착시 고정화 방법의 영향)

  • Shin, Taek-Soo;Lim, Byung-Seo;Lee, Sang-Woo;Rhu, Kwon-Gul;Jeong, Seon-Ki;Kim, Kwang-Yul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.8
    • /
    • pp.663-672
    • /
    • 2009
  • In this studies, the adsorption test using Chlorella pyrenoidosa was conducted to examine the effect of Pb adsorption according to various immobilized methods such as Ca-alginate, K-carrageenan, and Polyacrylamide. From the results, the duration to need to reach adsorption equilibrium was delayed according to the immobilization. And, the higher adsorption capacity of immobilized Chlorella pyrenoidosa was represented in the higher concentration of Pb, the smaller amount of immobilizing agent, and the higher pH of solution. The maximum adsorption capacity of Pb was shown in the adsorption test using Chlorella pyrenoidosa immobilized with Ca-alginate even though it was sensitive pH. The adsorption results properly represented with Freundlich isotherm equations. And, pseudo second-order chemisorption kinetic rate equation was applicable to all the biosorption data over the entire time range. The FT-IR analysis showed that the mechanism involved in biosorption of Pb by Chlorella pyrenoidosa was mainly attributed to Pb binding of carbo-acid and amide group. Adsorbed Pb on immobilized Chlorella prenoidosa was easily desorbed in the higher concentration of desorbents(NTA, HCl, EDTA, $H_2SO_4,\;Na_2CO_3$). Among the several desorbents, NTA showed the maximum desoption capacities of Pb from Chlorella pyrenoidosa immobilized with Ca-alginate and K-carrageenan and EDTA was the most effective in Chlorella pyrenoidosa immobilized with polyacrylamide. The desoprtion efficiency in the optimum condition was 90.0, 83.0, and 80.0%, respectively.

Characteristics of Silver Ion-Exchange and Methyl Iodide Adsorption at High Temperature Condition by Surface-Modified Natural Zeolite (표면개질 천연제올라이트를 이용한 은이온 교환 및 고온공정에서 메틸요오드 흡착특성)

  • Park, Geun Il;Cho, Il-Hoon;Kim, Kae-Nam;Lee, Min Ok;Yu, Jae-Hyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.10
    • /
    • pp.1765-1775
    • /
    • 2000
  • The removal of radioactive organic iodide generated from high temperature process in nuclear facility was generally performed by silver ion-exchanged synthetic zeolite (AgX). The purpose of this study is to obtain fundamental data for the substitution of natural zeolite(NZ) in stead of synthetic zeolite as supporter for the removal of methyl iodide in high temperature conditions. Therefore, NZ was modified with NaCl, $NaNO_3$ solution, and the analysis of the physical or surface characteristics through XRD, SEM-EDAX, and BET analysis was performed. In order to obtain the optimal surface-modification condition of NZ, adsorption capacities at $150^{\circ}C$ on surface-modified silver ion-exchanged NZ prepared with the variation of solution concentration were evaluated. The optimal condition of surface modification is that concentration of $NaNO_3$ and $AgNO_3$ are 1N and 1.2N, respectively(namely Ag-SMNZ). The adsorption isotherm of methyl iodide on Ag-SMNZ in a range of $100^{\circ}C$ to $300^{\circ}C$ was obtained, which is similar to that of 13X, and the maximum adsorption amount of Ag-SMNZ reached approximately 50% that of AgX. It would be evaluated that the adsorption capacity at $150{\sim}200^{\circ}C$ is relatively higher than other temperature, and the chemisorption between silver and iodide is attributed to a strong binding even after desorption test.

  • PDF

Adsorption Behaviors of Amphiphilic AuNPs at the Interface between Diverse organic Solvents and Water (다양한 유기용매와 물 경계면에서의 양친매성 금나노입자의 흡착 거동)

  • Yeon-Su Lim;Yeong-min Lee;Kyo-Chan Koo;Hee-Young Lee
    • Journal of Adhesion and Interface
    • /
    • v.25 no.1
    • /
    • pp.157-161
    • /
    • 2024
  • Amphiphilic gold nanoparticles, synthesized by the simultaneous binding of hydrophilic and hydrophobic ligands on their surfaces, find diverse applications in energy, bio, optical, electronic technologies, and various other fields. Particularly, these amphiphilic gold nanoparticles possess both hydrophilic and hydrophobic characteristics, enabling them to activate interface at the interface of immiscible fluids and form organized structures. The surface properties of gold nanoparticles play a crucial role in influencing the behaviors of amphiphilic gold nanoparticles at the interface of two fluids. Therefore, this study investigated the adsorption behaviors of gold nanoparticles at the organic solvent-water interface based on the surface characteristics of amphiphilic gold nanoparticles and the type of organic solvents. It was observed that the amount of adsorbed gold nanoparticles at the interface increased with the length of hydrocarbon chains in hydrophobic ligands and increased with shorter hydrocarbon chains in the organic solvent. Furthermore, using the Langmuir isotherm model, the study confirmed the formation of a monolayer by amphiphilic gold nanoparticles and obtained significant thermodynamic parameters simultaneously.

Identification of Sorption Characteristics of Cesium for the Improved Coal Mine Drainage Treated Sludge (CMDS) by the Addition of Na and S (석탄광산배수처리슬러지에 Na와 S를 첨가하여 개량한 흡착제의 세슘 흡착 특성 규명)

  • Soyoung Jeon;Danu Kim;Jeonghyeon Byeon;Daehyun Shin;Minjune Yang;Minhee Lee
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.125-138
    • /
    • 2023
  • Most of previous cesium (Cs) sorbents have limitations on the treatment in the large-scale water system having low Cs concentration and high ion strength. In this study, the new Cs sorbent that is eco-friendly and has a high Cs removal efficiency was developed by improving the coal mine drainage treated sludge (hereafter 'CMDS') with the addition of Na and S. The sludge produced through the treatment process for the mine drainage originating from the abandoned coal mine was used as the primary material for developing the new Cs sorbent because of its high Ca and Fe contents. The CMDS was improved by adding Na and S during the heat treatment process (hereafter 'Na-S-CMDS' for the developed sorbent in this study). Laboratory experiments and the sorption model studies were performed to evaluate the Cs sorption capacity and to understand the Cs sorption mechanisms of the Na-S-CMDS. The physicochemical and mineralogical properties of the Na-S-CMDS were also investigated through various analyses, such as XRF, XRD, SEM/EDS, XPS, etc. From results of batch sorption experiments, the Na-S-CMDS showed the fast sorption rate (in equilibrium within few hours) and the very high Cs removal efficiency (> 90.0%) even at the low Cs concentration in solution (< 0.5 mg/L). The experimental results were well fitted to the Langmuir isotherm model, suggesting the mostly monolayer coverage sorption of the Cs on the Na-S-CMDS. The Cs sorption kinetic model studies supported that the Cs sorption tendency of the Na-S-CMDS was similar to the pseudo-second-order model curve and more complicated chemical sorption process could occur rather than the simple physical adsorption. Results of XRF and XRD analyses for the Na-S-CMDS after the Cs sorption showed that the Na content clearly decreased in the Na-S-CMDS and the erdite (NaFeS2·2(H2O)) was disappeared, suggesting that the active ion exchange between Na+ and Cs+ occurred on the Na-S-CMDS during the Cs sorption process. From results of the XPS analysis, the strong interaction between Cs and S in Na-S-CMDS was investigated and the high Cs sorption capacity was resulted from the binding between Cs and S (or S-complex). Results from this study supported that the Na-S-CMDS has an outstanding potential to remove the Cs from radioactive contaminated water systems such as seawater and groundwater, which have high ion strength but low Cs concentration.