• Title/Summary/Keyword: binding capacity of metal ion

Search Result 17, Processing Time 0.031 seconds

Effect of Extracting Conditions on the Viscosity and Binding Capacity of Metal Ion of Alginate from Sea Tangle, Laminaria spp. (다시마 alginate 점도 및 금속이온 결합능에 미치는 추출조건의 영향)

  • You Byeong-Jin;IM Yeong-Sun;JEONG In-Hak
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.2
    • /
    • pp.267-271
    • /
    • 1998
  • In order to investigate the physical properties of alginate extracted from sea tangle, Laminaria app., under various conditions, viscosity and binding capacity of metal ion (BCMI) of alginate were measured. The higher concentrations of sodium carbonate and the longer extracting time became, the lower apparent viscosity and BCMI were. BCMI in alginate reached maximum at the concentration of 0.06M metal ion. The BCMI of $Pb^{++}$ ion was the highest but $Cu^{++}$ ion was the lowest in the five metal ions. BCMI was increased in proportion as increase of viscosity in alginate.

  • PDF

Synthesis and Chromatographic Characteristics of Multidentate Ligand-Boned Silica Stationary Phases

  • Li, Rong;Wang, Yan;Chen, Guo-Liang;Shi, Mei;Wang, Xiao-Gang;Zheng, Jian-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.8
    • /
    • pp.2201-2206
    • /
    • 2010
  • To improve the separation property and stability of metal chelate Cu(II) column, three new kinds of multidentate aminocarboxy silica columns with cation-exchange properties were synthesized using glutamic acid (Glu), glutamic acidbromoacetic acid (Glu-BAA), glutamic acid-bromosuccinic acid (Glu-BSUA) as ligands and silica gel as matrix. The standard proteins were separated with prepared chromatographic columns. The stationary phases exhibited the metal chelate property after fixing copper ion (II) on the synthesized multidentate ligand silica columns. The binding capacity of immobilized metal ion was related with the dentate number of multidentate ligands. Chromatographic behavior of proteins and the leakage of immobilized metal ion on multidentate chelate Cu(II) columns were affected by the dentate number of multidentate ligands and competitive elution system directly. The results showed that quinquedentate Glu-BSUA-Cu(II) column exhibited better chromatographic property and stability as compared with tridentate Glu-Cu(II) column, tetradentate Glu-BAA-Cu(II) column and commonly used IDA-Cu(II) column.

Metal Sequestering by a Poly(ethylenimine)-Sephadex G-25 Conjugate Containing 2,2'-Dihydroxyazobenzene

  • Gwan, Won Jong;Yu, Chang Eun;Jang, Won Seok;No, Yeong Seok;Seo, Jeong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.393-400
    • /
    • 2000
  • 2,2¢-Dihydroxyazobenzene (DHAB) was attached to poly(ethylenimine) (PEI) to obtain DHAB-PEI. Spectral titration revealed that uranyl, Fe(III), Cu(II), and Zn(II) ion form 1 : 1-type complexes with DHAB attached to PEI. Formation constants for the metal complexes formed by the DHAB moieties of DHAB-PEI were mea-sured by using various competing ligands. The results indicated thatthe concentrations of uranyl, Fe(III), and Cu(II) ions can be reduced to 10 -16 -10 -23 M at p 8 with DHAB-PEI when the concentration of the DHAB moiety is 1 residue M. By using cyanuric chloride as the coupling reagent, DHAB-PEI was immobilized on Sephadex G-25 resin to obtain DHAB-PEI-Seph. Binding of uranyl,Fe(III), Cu(II), and Zn(II) ion by DHAB-PEI-Seph was characterized by using competing ligands. A new method has been developed for characteriza-tion of metal sequestering ability of a chelating resin. Formation constants and metal-binding capacity of two sets of binding sites on the resin were estimated for each metal ion. DHAB-PI-Seph was applied to recovery of metals such as uranium,Fe, Cu, Zn, Pb, V, Mn, and W from seawater. The uranium recovery from seawaterby DHAB-PEI-Seph does not meet the criterion for economical feasibility partlydue to interference by Fe and Zn ions. The seawater used in the experiment was contaminated by Fe and Zn and, therefore, the efficiency of uranium extractionfrom seawater with DHAB-PEI-Seph could be improved if the experiment is carried out in a cleaner sea.

Studies on the Influence of Mercaptoacetic Acid (MAA) Modification of Cassava (Manihot sculenta Cranz) Waste Biomass on the Adsorption of Cu2+ and Cd2+ from Aqueous Solution

  • Horsfall, M. Jnr.;Spiff, A.I.;Abia, A.A.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.7
    • /
    • pp.969-976
    • /
    • 2004
  • Cassava peelings waste, which is both a waste and pollutant, was chemically modified using mercaptoacetic acid (MAA) and used to adsorb $Cu^{2+}\;and\;Cd^{2+}$ from aqueous solution over a wide range of reaction conditions at $30^{\circ}C$. Acid modification produced a larger surface area, which significantly enhanced the metal ion binding capacity of the biomass. An adsorption model based on the $Cu^{2+}/Cd^{2+}$ adsorption differences was developed to predict the competition of the two metal ions towards binding sites for a mixed metal ion system. The phytosorption process was examined in terms of Langmuir, Freundlich and Dubinin-Radushkevich models. The models indicate that the cassava waste biomass had a greater phytosorption capacity, higher affinity and greater sorption intensity for $Cu^{2+}\;than\;Cd^{2+}$. According to the evaluation using Langmuir equation, the monolayer binding capacity obtained was 127.3 mg/g $Cu^{2+}$ and 119.6 mg/g $Cd^{2+}$. The kinetic studies showed that the phytosorption rates could be described better by a pseudo-second order process and the rate coefficients was determined to be $2.04{\times}10^{-3}\;min^{-1}\;and\;1.98{\times}10^{-3}\;min^{-1}\;for\;Cu^{2+}\;and\;Cd^{2+}$ respectively. The results from these studies indicated that acid treated cassava waste biomass could be an efficient sorbent for the removal of toxic and valuable metals from industrial effluents.

Antioxidative Action of Enzymatic Hydrolysates of Mackerel Muscle Protein (고등어 근육단백질 효소 가수분해물의 항산화 작용)

  • 염동민;김영숙
    • The Korean Journal of Food And Nutrition
    • /
    • v.7 no.2
    • /
    • pp.128-136
    • /
    • 1994
  • Mackerel muscle protein hydrolysates, which were prepared from defatted mackerel meal by proteases such as complex enzyme, alcalase, bromelain, pancrease, pepsin, w-chymotrypsin, trypsin and papain, were tested for the antioxidative action against linoleic acid. Among proteases tested, the hydrolysates obtained from the treatment of complex enzyme, bromelain and alcalase showed higher antioxidative effects. Also, the hydrolysates showed the synergistic effects with o-tocopherol and the inhibitory effects for peroxidation of metal ions(Fe3+, Cua+) From the profiles of fractionation of the hydrolysates with Bio-gel P-2 column, the most active fractions, part I(complex enzyme-derived) and part e(bromelain-derived), had below MW 1,400 and the antioxidative effects were closely related to the binding capacity with metal ion(Cua+). Amno acid composition of the part I was abundant in histidine, arginine, phenylalanine and lysine, and the part e was abundant in lysine, glutamic acid and leucine.

  • PDF

Properties and Functions of Melanin Pigment from Klebsiella sp. GSK

  • Sajjan, Shrishailnath S.;Anjaneya, O;Kulkarni, Guruprasad B.;Nayak, Anand S.;Mashetty, Suresh B.;Karegoudar, T.B.
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.1
    • /
    • pp.60-69
    • /
    • 2013
  • Purified melanin pigment from Klebsiella sp. GSK was characterized by thermogravimetric, differential thermal, X-ray diffraction and elemental analysis. This melanin pigment is structurally amorphous in nature. It is thermally stable up to $300^{\circ}C$ and emits a strong exothermic peak at $700^{\circ}C$. Its carbon, hydrogen and nitrogen composition is 47.9%, 6.9% and 12.0%, respectively. It was used to scavenge metal ions and free radicals. After immobilizing the pigment and using it to adsorb copper and lead ions, the metal ion adsorption capacity was evaluated by atomic absorption spectroscopy (AAS) and the identity of melanin functional groups involved in the binding of metal ions was determined by Fourier transform infrared (FT-IR) spectroscopy. Batch adsorption studies showed that 169 mg/g of copper and 280 mg/g of lead were adsorbed onto melanin-alginate beads. The metal ion adsorption capacity of the melanin-alginate beads was relatively significant compared to alginate beads. The metal ion desorption capacity of HCl was greater (81.5% and 99% for copper and lead, respectively) than that of EDTA (80% and 71% for copper and lead, respectively). The ability of the melanin pigment to scavenge free radicals was evaluated by inhibition of the oxidation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and was shown to be about 74% and 98%, respectively, compared with standard antioxidants.

Electrochemical Properties of Additive-Free Nanostructured Cobalt Oxide (CoO) Lithium Ion Battery Electrode (첨가제 없이 제작된 나노구조 코발트 산화물 리튬이온 배터리 전극의 전기 화학적 특성)

  • Kim, Juyun;Park, Byoungnam
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.5
    • /
    • pp.335-340
    • /
    • 2018
  • Transition metal oxide materials have attracted widespread attention as Li-ion battery electrode materials owing to their high theoretical capacity and good Li storage capability, in addition to various nanostructured materials. Here, we fabricated a CoO Li-ion battery in which Co nanoparticles (NPs) are deposited into a current collector through electrophoretic deposition (EPD) without binding and conductive agents, enabling us to focus on the intrinsic electrochemical properties of CoO during the conversion reaction. Through optimized Co NP synthesis and electrophoretic deposition (EPD), CoO Li-ion battery with 630 mAh/g was fabricated with high cycle stability, which can potentially be used as a test platform for a fundamental understanding of conversion reaction.

Evaluation of Metal Biosorption Efficiency of Laboratory-grown Microcystis under Various Environmental Conditions

  • Pradhan, Subhashree;Singh, Sarita;Rai, Lal Chand;Parker, Dorothy L.
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.1
    • /
    • pp.53-60
    • /
    • 1998
  • This study examines the effect of pH, temperature, metal ion concentration and culture density on metal biosorption by the nuisance cyanobacterium Microcystis aeruginosa. Ni biosorption was higher at pH 9.2 than at neutral and acidic pH. In contrast the biosorption of Cu and Zn was maximum at pH 7.0. However, biosorption of Zn was difficult to measure at pH values 9.2 and 10.5, owing to the formation of insoluble complexes. All the test metals (Cu, Zn, and Ni) showed maximum biosorption rate at low culture densities of 40 mg dry wt $1^{-1}$. The biosorption of Cu, Zn, and Ni was maximum at $40^{\circ}C$. However, no worthwhile difference in Zn and Ni sorption was noticed at 4 and $29^{\circ}C$ as compared to $40^{\circ}C$. Of these three metals used Microcystis showed a greater binding capacity ($K_{f}$ value=0.84, Freundlich adsorbent capacity) and accelerated biosorption rate for Cu under various environmental conditions. Fitness of mathematical models on metal biosorption by Microcystis confirmed that the biological materials behave in the same way as physical materials. These results suggest that before using a biosorbent for metal recovery, the environmental requirements of the biosorbent must be ascertained.

  • PDF

Flexible, Tunable, and High Capacity Ultracapacitor using Nitron-Doped Graphene (질소가 도핑된 그라핀을 이용한 고용량의 조절이 가능한 플렉서블 울트라커페시터)

  • Jeong, Hyung Mo;Shin, Weon Ho;Choi, Yoon Jeong;Kang, Jeung Ku;Choi, Jang Wook
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.163.2-163.2
    • /
    • 2010
  • We developed a simple method to synthesis a nitrogen doped graphene, nitrogen plasma treated graphene (NPG) sheets thought nitrogen plasma etching of graphene oxide (GO). X-ray photo electron spectroscopy (XPS) study of NPG sheets treated at various plasma conditions reveal that N-doping is classified to 3 kinds of binding configurations. The nitrogen doping concentration is at least 1.5 at % and up to 3 at% with changing of ratio of nitrogen configuration in NPG. Our group demonstrate ultracapacitor with high capacity and extremely durable using a NPG sheets that are comparable to pristine graphene supercapacitor, and pseudocapacitor using polymer and metal oxide with redox reaction, capacitance that are three-times higher, and a cycle life that are extremely stable. We also realized flexible capacitor by using the paper electrode that are coated by NPG sheets. NPG paper capacitor presented almost same performance compare with NPG on a metal substrate, and durability is much more enhanced than that. To additionally explain that how different kind of atoms in graphene layers can act as the ion absorption sites, we simulated the binding energy between nitrogen in graphene layer and ions in electrolyte. Increasing the energy density and long cycle life of ultracapacitor will enable them to compete with batteries and conventional capacitors in number of applications.

  • PDF

Effects of free metal ions and organo-metal complexes on the absorption of lead and cadmium by plants (식물에 의한 납, 카드뮴 흡수 기작에 미치는 자유이온 및 유기산-중금속 복합체의 영향)

  • Lee, Mina;Seo, Byounghwan;Kim, Kwon-Rae
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.159-164
    • /
    • 2021
  • Heavy metals exist in soils in various chemical forms including free metal ions and organo-metal complexes. The ratio of free metal ions has been known to be highly associated with the plant absorption of heavy metals. This study aims to understand the effect of free ions and organo-metal complexes on the absorption of lead (Pb) and cadmium (Cd) by plants. For this, lettuce grown in a hydroponic system for 28 days was consequently grown another 48 hours using Pb and Cd solutions. The ratios of free ion to organo-metal complexes in the solutions were adjusted at 100:0, 90:10, 70:30, 60:40 by four different organic acids (citric, oxalic, acetic, and humic acid). After that, the concentration of Pb and Cd in lettuce were analyzed. The Pb and Cd absorption by lettuce was more relied on the types of organic acids treated and the type of metals rather than the ratio of free metal ions. For example, citric acid increased the Pb absorption while it decreased the Cd absorption by lettuce. There was no significant relationship between free metal ion ratios and both Pb and Cd uptake by lettuce. It could be explained that citric acid, a relatively higher molecular weight organic acid, has higher ion binding capacity, so it forms organo-Pb complex easily due to the higher affinity of Pb on the binding site in comparison with Cd. Consequently, this complexation would assist Pb uptake by lettuce.