• Title/Summary/Keyword: binder silica

검색결과 217건 처리시간 0.027초

Effects of nano-silica and micro-steel fiber on the engineering properties of ultra-high performance concrete

  • Hakeem, Ibrahim Y.;Amin, Mohamed;Abdelsalam, Bassam Abdelsalam;Tayeh, Bassam A.;Althoey, Fadi;Agwa, Ibrahim Saad
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.295-312
    • /
    • 2022
  • This study investigates the effects of nano silica (NS) and micro steel fiber on the properties of ultra-high-performance concrete (UHPC). The experimental consists of three groups, each one with five percentages of NS content (0%, 2%, 4%, 6% and 8%) in addition to the 20% silica fume and 20% quartz powder proportioned according to the weight of cement added to the mixtures. In addition, three percentages of micro steel fibers (0%, 1% and 2%) were considered. Different mixtures with varying percentages of NS and micro steel fibers were prepared to set the water-to-binder ratio, such as 0.16% and 1.8% superplasticizer proportioned according the weight of the binder materials. The fresh properties, mechanical properties and elevated temperatures of the mixtures were calculated. Then, the results from the microstructure analyses were compared with that of the reference mixtureand it was found that 6% replacement of cement with NS was optimum replacement level. When the NS content was increased from 0% to 6%, the air content and permeability of the mixture decreased by 35% and 39%, the compressive and tensile strength improved by 21% and 18% and the flexural strength and modulus of elasticity increased by 20% and 11.5%, respectively. However, the effect of micro steel fibres on the compressive strength was inconclusive. The overall results indicate that micro steel fibres have the potential to improve the tensile strength, flexure strength and modulus of elasticity of the UHPC. The use of 6% NS together with 1% micro-steel fiber increased the concrete strength and reduce the cost of concrete mix.

Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using non-contact measurement method

  • Grzegorz Ludwik Golewski
    • Advances in nano research
    • /
    • 제16권3호
    • /
    • pp.217-229
    • /
    • 2024
  • This paper presents results of visual analysis of cracks formation and propagation of concretes made of quaternary binders (QBC). A composition of the two most commonly used mineral additives, i.e. fly ash (FA) and silica fume (SF) in combination with nanosilica (nS), has been proposed as a partial replacement of the cement. The principal objective of the present study is to achieve information about the effect of simultaneous incorporation of three pozzolans as partial replacement to the OPC on the fracture processes in concretes made from quaternary binders (QBC). The modern and precise non-contact measurement method (NCMM) via digital image correlation (DIC) technique was used, during the studies. In the course of experiments it was established that the substitution of OPC with three pozzolans including the nanoadditive in FA+SF+nS FA+SF+nS combination causes a clear change of brittleness and behavior during fractures in QBCs. It was found that the shape of cracks in unmodified concrete was quasi-linear. Substitution of the binder by SCMs resulted in a slight heterogeneity of the structure of the QBC, including only SF and nS, and clear heterogeneity for concretes with the FA additive. In addition, as content of FA rises throughout each of QBC series, material becomes more ductile and shows less brittle failure. It means that an increase in the FA content in the concrete mix causes a significant change in fracture process in this composite in comparison to concrete with the addition of silica modifiers only.

실리카흄을 이용한 중금속함유 유기성 슬러지 시멘트 고화체의 용출특성과 고정화기작에 관한 연구 (Fixation Mechanism and Leachability of Heavy Metal for Sludge Solidified by Silica Fume and Cement)

  • 전관수;황병기
    • 공업화학
    • /
    • 제16권2호
    • /
    • pp.180-186
    • /
    • 2005
  • 본 논문은 유기물과 중금속이 함께 포함되어 있는 폐수 슬러지의 시멘트 고형화를 위해 포졸란물질인 실리카흄을 고화보조재로 사용한 연구결과이다. 실리카흄을 고화보조재로 사용할 경우 고화체의 일축압축강도는 현저히 증가하는 결과를 보여주었으며, 실리카흄의 시멘트 대체가 전체 배합물의 15%까지 증가하였을 때 일축압축강도는 실리카흄을 전혀 사용하지 않았을 경우에 비하여 66.7%까지 증가하는 결과를 보여주었다. 또한 시멘트가 실리카흄으로 대체되는 양이 증가하면서 총 유기탄소와 중금속인 크롬의 용출량은 감소하는 결과를 보여주었으며, 배합물 중 실리카흄이 5%를 차지할 때 중성의 용출액에서 총 유기탄소의 85%가 용출억제되었으며, 산성의 용출액에서 0.76 mg-Cr/g-Cr의 크롬만이 용출되었다. 전자주사현미경과 X-선 회절분석, 적외선 분광분석 등을 이용한 미세구조분석 결과 실리카흄은 시멘트경화 초기에 크링커 입자를 피복하여 초결(initial setting)과 수화를 저해하는 에트링가이트(ettringite)의 형성을 감소시키는 것으로 나타났다. 본 연구결과 중금속과 유기물이 혼합된 슬러지의 시멘트 고형화에 있어서 실리카흄의 첨가는 유기물질이 시멘트 수화반응에 미치는 악영향을 억제하고 중금속 및 유기물의 용출을 감소시키는 것으로 나타났다.

페로실리콘 산업부산물 활용 시멘트 콘크리트의 내구성능 평가 (Durability Evaluation of Cement Concrete Using Ferrosilicon Industrial Byproduct)

  • 김창영;안기용
    • 한국건설순환자원학회논문집
    • /
    • 제11권1호
    • /
    • pp.89-96
    • /
    • 2023
  • 산업부산물인 페로실리콘을 사용한 시멘트 콘크리트의 내구성능을 평가하기 위하여 페로실리콘의 치환율을 3단계로 변화시켜 제조한 시멘트 경화체의 염화물침투저항성, 알칼리실리카 반응성에 대하여 평가하였다. 페로실리콘을 사용한 시멘트 콘크리트의 내구성능은 화학조성이 유사한 실리카흄과 비교하여 평가하였으며, 에너지 분산형 X선 분광법, 공극측정 및 X선 회절분석 등 기기분석을 통하여 페로실리콘 콘크리트의 미세 구조적 특성을 고찰하였다. 그 결과, 페로실리콘을 10 % 치환한 경우 OPC콘크리트보다 높은 강도발현 특성을 보인 반면 치환율이 20 %, 30 % 증가할수록 압축강도는 낮게 발현되었다. 그러나 염화물 침투저항성에 대한 결과는 치환율이 증가할수록 우수한 결과를 나타내었으며, 실리카흄을 사용한 경우에 비하여 페로실리콘을 사용한 콘크리트의 내구성은 약간 떨어지지만 OPC에 비해서는 우수한 결과를 나타내었다. 이는 페로실리콘의 실리카(SiO2) 함량이 높아 더 많은 C-S-H 겔을 생성하여 더 밀실한 공극 구조를 만들었기 때문이라 생각된다. 길이변화시험을 통한 규산염 바인더에 대한 알칼리실리카반응의 위험성은 대부분 0.2 % 미만으로 나타났으며, 페로실리콘 및 실리카흄을 사용한 모르타르 모두 치환율이 증가할수록 알칼리실리카 반응에 대한 저항성은 우수한 것으로 나타났다. 따라서 고가의 실리카흄을 사용하는 대신 산업 폐기물을 재사용하면 제조 중 환경 부하를 줄이고 비용을 절약할 수 있을 것으로 판단된다.

농약 방출 조절제 소재로서 실리카 중공 미세구의 물성연구 (A Study on the Properties of Hollow Silica Microspheres for Controlled-release Pesticide Formulation)

  • 정병수;박용성
    • 농약과학회지
    • /
    • 제8권4호
    • /
    • pp.319-324
    • /
    • 2004
  • 실리카 중공 미세구를 이용하여 방출 조절형 입제 농약을 제조합에 있어 실리카 중공 미세구 제조시 핵 제거 방법으로 열분해법을 사용하면 benfuracarb를 실리카 중공 미세구 중량의 2.67배까지 함침이 가능하였다. 이렇게 제조된 방출 조절형 입제 농약을 수중 방출 실험한 결과, 점결제로 ESO를 사용하였을 때 일정한 benfuracarb 방출 속도를 유지하여 10일부터 용액 중의 benfuracarb의 농도를 1.65 ppm 정도를 30일까지 유지되었다.

3성분계 포졸란재를 이용한 반응성 분체 콘크리트(RPC)의 고온특성 (The mechanical properties of Reactive Powder Concrete using Ternary Pozzolanic Materials exposed to high Temperature)

  • 장칩도르지;소형석;이제방;소승영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.68-71
    • /
    • 2013
  • Reactive Powder Concrete (RPC) is an ultra high strength and high ductility cement-based composite material and has shown some promise as a new generation concrete in construction field. It is characterized by a silica fume-cement mixture with very low water-binder (w/b) ratio and very dense microstructure, which is formed using various powders such as cement, silica fume and very fine quartz sand (0.15~0.4mm) instead of ordinary coarse aggregate. However, the unit weight of cement in RPC is as high as 900~1,000 kg/㎥ due to the use of very fine sand instead of coarse aggregate, and a large volume of relatively expensive silica fume as a high reactivity pozzolan is also used, which is not produced in Korea and thus must be imported. Since the density of RPC has a heavy weight at 2.5~3.0 g/㎤. In this study, the modified RPC was made by the combination of ternary pozzolanic materials such as blast furnace slag and fly ash, silica fume in order to economically and practically feasible for Korea's situation. The fire resistance and structural behavior of the modified RPC exposed to high temperature were investigated.

  • PDF

계면활성제 흡착 및 열처리를 이용한 실리카 에어로겔의 표면 개질 (Surface modification of silica aerogel by surfactant adsorption and heat treatment methods)

  • 김남이;김성우
    • 한국응용과학기술학회지
    • /
    • 제27권3호
    • /
    • pp.282-289
    • /
    • 2010
  • In preparation of silica aerogel-based hybrid coating materials, the combination of hydrophobic aerogel with organic polar binder material is shown to be very limited due to dissimilar surface property between two materials. Accordingly, the surface modification of the aerogel would be required to obtain compatibilized hybrid coating sols with homogeneous dispersion. In this study, the surface of silica aerogel particles was modified by using both surfactant adsorption and heat treatment methods. Four types of surfactants with different molecular weights and HLB values were used to examine the effect of chain length and hydrophilicity. The surface property of the modified aerogel was evaluated in terms of visible observation for aerogel dispersion in water, water contact angle measurement, and FT-IR analysis. In surface modification using surfactants, the effects of surfactant type and content, and mixing time as process parameter on the degree of hydrophilicity for the modified aerogel. In addition, the temperature condition in modification process via heat treatment was revealed to be significant factor to prepare aerogel with highly hydrophilic property.

Resistance of Cementitious Binders to Chloride Induced Corrosion of Embedded Steel by Electrochemical and Microstructural Studies

  • Song, Ha-Won;Ann, Ki-Yong;Kim, Tae-Sang
    • Corrosion Science and Technology
    • /
    • 제8권2호
    • /
    • pp.74-80
    • /
    • 2009
  • The high alkaline property in the concrete pore solution protects the embedded steel in concrete from corrosion due to aggressive ions attack. However, a continuous supply of those ions, in particular, chlorides altogether with a pH fall in electrochemical reaction on the steel surface eventually depassivate the steel to corrode. To mitigate chloride-induced corrosion in concrete structures, finely grained mineral admixtures, for example, pulverized fuel ash (PFA), ground granulated blast furnace slag (GGBS) and silica fume (SF) have been often advised to replace ordinary Portland cement (OPC) partially as binder. A consistent assessment of those partial replacements has been rarely performed with respect to the resistance of each binder to corrosion, although the studies for each binder were extensively looked into in a way of measuring the corrosion rate, influence of microstructure or chemistry of chlorides ions with cement hydrations. The paper studies the behavior of steel corrosion, chloride transport, pore structure and buffering capacity of those cementitious binders. The corrosion rate of steel in mortars of OPC, 30% PFA, 60% GGBS and 10% SF respectively, with chloride in cast ranging from 0.0 to 3.0% by weight of binder was measured at 7, 28 and 150 days to determine the chloride threshold level and the rate of corrosion propagation, using the anodic polarization technique. Mercury intrusion porosimetry was also applied to cement pastes of each binder at 7 and 28 days to ensure the development of pore structure. Finally, the release rate of bound chlorides (i.e. buffering capacity) was measured at 150 days. The chloride threshold level was determined assuming that the corrosion rate is beyond 1-2 mA/$m^3$ at corrosion and the order of the level was OPC > 10% SF > 60% GGBS > 30% PFA. Mercury intrusion porosimetry showed that 10% SF paste produced the most dense pore structure, followed by 60% GGBS, 30% PFA and OPC pastes, respectively. It was found that OPC itself is beneficial in resisting to corrosion initiation, but use of pozzolanic materials as binders shows more resistance to chloride transport into concrete, thus delay the onset of corrosion.

Phenomenological Model to Re-proportion the Ambient Cured Geopolymer Compressed Blocks

  • Radhakrishna, Radhakrishna;Madhava, Tirupati Venu;Manjunath, G.S.;Venugopal, K.
    • International Journal of Concrete Structures and Materials
    • /
    • 제7권3호
    • /
    • pp.193-202
    • /
    • 2013
  • Geopolymer mortar compressed blocks were prepared using fly ash, ground granulated blast furnace slag, silica fume and metakaolin as binders and sand/quarry dust/pond ash as fine aggregate. Alkaline solution was used to activate the source materials for synthesizing the geopolymer mortar. Fresh mortar was used to obtain the compressed blocks. The strength development with reference to different parameters was studied. The different parameters considered were fineness of fly ash, binder components, type of fine aggregate, molarity of alkaline solution, age of specimen, fluid-to-binder ratio, binder-to-aggregate ratio, degree of saturation, etc. The compressed blocks were tested for compression at different ages. It was observed that some of the blocks attained considerable strength within 24 h under ambient conditions. The cardinal aim was to analyze the experimental data generated to formulate a phenomenological model to arrive at the combinations of the ingredients to produce geopolymer blocks to meet the strength development desired at the specified age. The strength data was analyzed within the framework of generalized Abrams' law. It was interesting to note that the law was applicable to the analysis of strength development of partially saturated compressed blocks when the degree of saturation was maintained constant. The validity of phenomenological model was examined with an independent set of experimental data. The blocks can replace the traditional masonry blocks with many advantages.

Analysis of Optical Properties with Photopolymers for Holographic Application

  • Kim Nam;Hwang Eun-Seop;Shin Chang-Won
    • Journal of the Optical Society of Korea
    • /
    • 제10권1호
    • /
    • pp.1-10
    • /
    • 2006
  • Optical transparency and high diffraction efficiency are two essential factors for high performance of the photopolymer. Optical transparency mainly depends on the miscibility between polymer binder and photopolymerized polymer, while diffraction efficiency depends on the refractive index modulation between polymer binder and photopolymerized polymer. For most of organic materials, the large refractive index difference between two polymers accompanies large structural difference that leads to the poor miscibility and thus poor optical quality via light scattering. Therefore, it is difficult to design a high-performance photopolymer satisfying both requirements. In this work, first, we prepared a new phase-stable photopolymer (PMMA) with large refractive index modulation and investigated the optical properties. Our photopolymer is based on modified poly (methyl methacrylate) as a polymer binder, acryl amide as a photopolymerizable monomer, triethanolamine as initiator, and yellow eosin as a photosensitizer at 532 nm. Diffraction efficiency over 85% and optical transmittance over 90% were obtained for the photopolymer. Second, Organic-inorganic nanocomposite films were prepared by dispersing an aromatic methacrylic monomer and a photo- initiator in organic-inorganic hybrid sol-gel matrices. The film properties could be controlled by optimizing the content of an organically modified silica precursor (TSPEG) in the sol-gel matrices. The photopolymer film modified with the organic chain (TSPEG) showed high diffraction efficiency (> 90%) under an optimized condition. High diffraction efficiency could be ascribed to the fast diffusion and efficient polymerization of monomers under interference light to generate refractive index modulation. The TSPEG modified photopolymer film could be successfully used for holographic memory.