• 제목/요약/키워드: binder jet 3d printing

검색결과 7건 처리시간 0.02초

바인더 젯 3D 프린터의 프린팅 헤드 내구성 향상을 위한 연구 (A Study for Improving the Durability of Print Heads in Binder Jet 3D Printers Method)

  • 황정철;김태성
    • 대한안전경영과학회지
    • /
    • 제25권2호
    • /
    • pp.153-158
    • /
    • 2023
  • This research was conducted to reduce the defect rate caused by nozzle clogging of printing heads used in binder jet 3D printers. The binder jet 3D printing technology may adhere to the printing head nozzle by dispersing powder due to mechanical operation such as transferring the printing head and supplying powder, and may cause nozzle clogging by natural curing at the nozzle end depending on the type of binder used. To solve this problem, this study created a cleaning module exclusively for printing heads to check whether the durability of printing heads is improved through analysis of printing results before and after using the cleaning module. To this end, this research used a thermal bubble jet printing head, and the used powder was studied using gypsum powder.

다중써멀버블 잉크젯방식의 3D 프린팅 시스템 개발 및 성능평가 (Evaluation and Development of Multi Thermal Bubble Ink Jet 3D Printing System)

  • 신문관;배성우;김정수
    • 한국정밀공학회지
    • /
    • 제32권9호
    • /
    • pp.787-792
    • /
    • 2015
  • Recently, 3D printing technology is a hot issue in various industrial fields. According to the user's application, it allows for the free form fabrication method to be utilized in a wide range. The powder based fusion technique is one of the 3D printing methods. When using this method it is possible to apply the various binder jetting techniques such as piezo, thermal bubble jet, dispenser and so on. In this paper, a multi thermal bubble ink jet was integrated for jetting of powder binding material and developing a power fused 3D printing system. For high quality 3D printing parts, it needs an analysis and evaluation of the behavior of the thermal bubble ink jet head. In the experiment, a correlation between jetting binder quantity and layer thickness of powder was investigated, and a 3D part model was fabricated, which was used by measuring the scale factor.

바인더젯 3D 프린팅을 위한 TiO2 입자를 함유한 시멘트 기반 재료의 기계적 성능 및 광촉매 특성 분석 (Characterization of mechanical and photocatalytic performance on cement-based materials with TiO2 particles for binder jet 3D printing)

  • 유준성;리패기;배성철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 가을학술발표대회논문집
    • /
    • pp.69-70
    • /
    • 2023
  • The development of advanced 3D printing technologies has opened up new opportunities for customized digital designs in the construction industry. Using nano- and micro-scale additives is expected to improve the performance of cement-based materials in 3D printing. TiO2 particles have been widely used as reinforcing additives in cement-based materials. Therefore, this study aims to investigate the application of cement-based materials containing multi-size TiO2 particles in binder jet 3D printing and the effect of different-size TiO2 particles on the performance of printed samples. TiO2 particles exhibit an excellent filling effect, which increases the density of the printed samples and promotes hydration, thereby improving the compressive strength of the samples. In addition, larger TiO2 particles exert more pronounced filling and photocatalytic effects on the resulting samples.

  • PDF

TiO2 입자의 사이즈가 바인더젯 3D 프린팅 시멘트계 재료의 특성에 미치는 영향 (Effect of nano-TiO2 size on the properties of cement-based materials produced by binder jet 3D printing)

  • 유준성;리패기;배성철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.188-189
    • /
    • 2022
  • With the development of nano-reinforcement technology, TiO2 nanomaterials have received widespread attention as one of the additives without pozzolanic reaction, which can be used to improve the mechanical properties of cement-based materials. Meanwhile, with the development of additive manufacturing technology or known as 3D printing technology, its application in the construction field has also got noticed. Therefore, in this work, the effect of three sizes of TiO2 on the compressive strength of hardened cement-based materials fabricated by binder jetting 3d printing was evaluated. According to the results, the TiO2 particles with larger sizes can provide better reinforcement to the hardened cement due to its more significant filling effect.

  • PDF

사형 주조에서 바인더 젯 3D 프린터를 이용한 기계적 물성 향상을 위한 공정 연구 (A Study on the Process for Improving Mechanical Property of Sand Casting by Using the Binder Jetting Method)

  • 황정철;김태성
    • 대한안전경영과학회지
    • /
    • 제25권1호
    • /
    • pp.23-29
    • /
    • 2023
  • Among the Additive Manufacturing (AM) technologies, the Binder-Jetting printing technology is a method of spraying an adhesive on the surface of powder and laminate layer by layer. Recently, this technique has become a major issue in the production of large casting products such as ship-building, custom vehicles and so on. In this study, we performed research to make actual mold castings and increase mechanical property by using special sand and water-based binders. For use as a mold, it has a strength of more than 3MPa and permeability. Various experiments were carried out to obtain suitable them. The major process parameters were binder jetting volume, binder types, layer thickness and heat treatment condition. As a result of this study, the binder drop quantity was measured to be about 60 pico-liter, layer thickness was 100㎛ and the heat treatment condition was measured about 1,000℃ and compressive strength were measured to be more than 5MPa. The optimum condition of this experiment was established through actual casting of aluminum. The equipment used in this study was a Freeforms T400 model (SFS Co., Ltd.), and the printing area of 420 * 300 * 250mm and resolution of 600dpi can be realized.

바인더 젯팅 적층제조기술을 활용한 다공성 세라믹필터 제작 (Fabrication of Ceramic Filters via Binder Jetting Type 3D Printing Technology)

  • 권모세;최종한;황광택;최정훈;한규성;김응수;김진호
    • 한국재료학회지
    • /
    • 제33권7호
    • /
    • pp.285-294
    • /
    • 2023
  • Porous ceramics are used in various industrial applications based on their physical properties, including isolation, storage, and thermal barrier properties. However, traditional manufacturing environments require additional steps to control artificial pores and limit deformities, because they rely on limited molding methods. To overcome this drawback, many studies have recently focused on fabricating porous structures using additive manufacturing techniques. In particular, the binder jet technology enables high porosity and various types of designs, and avoids the limitations of existing manufacturing processes. In this study, we investigated process optimization for manufacturing porous ceramic filters using the binder jet technology. In binder jet technology, the flowability of the powder used as the base material is an important factor, as well as compatibility with the binder in the process and for the final print. Flow agents and secondary binders were used to optimize the flowability and compatibility of the powders. In addition, the effects of the amount of added glass frit, and changes in sintering temperature on the microstructure, porosity and mechanical properties of the final printed product were investigated.

진공함침을 적용한 바인더젯 3D 프린팅 출력물의 성능 평가 (Evaluation of Binder jetting 3D Printed Specimens Using Vacuum Impregnation)

  • 박광민;박수현;;이봉춘;노영숙
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제24권2호
    • /
    • pp.103-110
    • /
    • 2020
  • 본 연구는 바인더젯 3D 프린팅 출력물의 강도증진을 위하여 진공함침 후처리 공정의 적용성을 검토하였다. 또한, 출력물 크기에 따른 강도발현 한계를 확인하기 위하여 10 mm, 20 mm, 30 mm 및 40 mm 큐빅 출력물을 대상으로 침투성, 부피밀도 및 압축강도를 확인하였다. 그 결과, 진공함침 후처리 공정에서 최대압력이 증가함에 따라 후처리 용액이 출력물 내부까지 침투하게 되고 이에 따라서 침투면적률이 개선되는 것을 확인하였다. 출력물 압축강도율과 후처리 용액 침투면적률은 보정결정계수 0.992의 지수함수 형태의 상관관계를 나타내고 있다. 또한, 부피밀도가 증가하였으며 이는 후처리 용액이 내부까지 침투한 것으로 유추할 수 있다. 결론적으로 바인더젯 3D 프린팅 출력물의 강도증진을 위해서는 출력물 내부까지 후처리 용액을 침투하는 것이 필수적이며, 이를 위한 유효한 방법으로써 진공함침을 제안한다.