• Title/Summary/Keyword: binary number

Search Result 769, Processing Time 0.023 seconds

A Numerical Study on the Solidification of Binary Mixture with Double-diffusive Convection in the Liquid (복합대류가 이원용액의 응고과정에 미치는 영향에 관한 수치적 연구)

  • Yoo, J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.2
    • /
    • pp.111-121
    • /
    • 1993
  • Double-diffusive convection during solidification process of the binary mixture was studied numerically. Enthalpy method and finite element method were implemented in the analysis. Calculation carried out for $R{\alpha}_T=10^3-10^4$ and $R{\alpha}_T=0-10^5$. The results show that the variation of thermal Rayleigh number changes the fields of velocity, temperature and concentration, but the variation of solutal Rayleigh number gives little effects on those. In conclusion, concentration gradient can be negligible compared with temperature gradient in macroscopic point of view, although concentration gradient plays a role in forming dendrite.

  • PDF

Discriminant Analysis of Binary Data with Multinomial Distribution by Using the Iterative Cross Entropy Minimization Estimation

  • Lee Jung Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.125-137
    • /
    • 2005
  • Many discriminant analysis models for binary data have been used in real applications, but none of the classification models dominates in all varying circumstances(Asparoukhov & Krzanowski(2001)). Lee and Hwang (2003) proposed a new classification model by using multinomial distribution with the maximum entropy estimation method. The model showed some promising results in case of small number of variables, but its performance was not satisfactory for large number of variables. This paper explores to use the iterative cross entropy minimization estimation method in replace of the maximum entropy estimation. Simulation experiments show that this method can compete with other well known existing classification models.

Radix-trellis Viterbi Decoding of TCM/PSK using Metric Quantization (TCM/PSK의 양지화 Radix-trellis Viterbi 복호)

    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.5
    • /
    • pp.731-737
    • /
    • 2000
  • In this paper we propose a decoding algorithm of Ungerboeck TCM/PSK in the concept of Radix-trellis, which has been applied to the decoding of convolutional codes for the high speed decoding. As an example we choose 16-state trellis coded 8-ary PSK. For Radix-4 and Radix-16 trellis decoding, we explain the path metric(PM) and the branch metric(BM) calculation. By using the simulation, we evaluate the bit error rate(BER) performance according to the number of binary digits for I-Q value, PM and BM registers. The proper number of binary digits of each register has been derived.

  • PDF

Periodic Binary Sequence Time Offset Calculation Based on Number Theoretic Approach for CDMA System (CDMA 시스템을 위한 정수론 접근 방법에 의한 주기이진부호의 사건?? 계산)

  • 한영열
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.5
    • /
    • pp.952-958
    • /
    • 1994
  • In this paper a method calculates the time offset between a binary sequence and its shifted sequence based on the number theoretic approach is presented. Using this method the time offset between a binary sequence and its shifted sequence can be calculated. It has been recongnized that the defining the reference (zero-offset) sequence is important in synchronous code division multiple access(CDMA) system since the same spreading sequence are used by the all base station. The time offset of the sequence with respect to the zero offset sequence are used to distinguish signal received at a mobile station from different base stations. This paper also discusses a method that defines the reference sequence.

  • PDF

Gibbs Energy of Nonrandomly Mixed Lattice Solutions with a Specific Interaction (특정 상호작용을 갖는 논랜덤 혼합 격자 용액의 깁스 에너지)

  • Jung, Hae-Young
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.663-670
    • /
    • 2009
  • Performing random number simulations, we obtained an approximate distribution of the number of ways arranging molecules in a binary lattice solution of nonrandom mixing with a specific interaction. From the distribution an approximate equation of excess Gibbs energy for a binary lattice solution was derived. Using the equation, liquid-vapor equilibrium at constant pressure for 15 binary solutions were calculated and compared with the result from Wilson equation, Van Laar equation and Redlich-Kister equation.

Differential Power Analysis on Countermeasures Using Binary Signed Digit Representations

  • Kim, Tae-Hyun;Han, Dong-Guk;Okeya, Katsuyuki;Lim, Jong-In
    • ETRI Journal
    • /
    • v.29 no.5
    • /
    • pp.619-632
    • /
    • 2007
  • Side channel attacks are a very serious menace to embedded devices with cryptographic applications. To counteract such attacks many randomization techniques have been proposed. One efficient technique in elliptic curve cryptosystems randomizes addition chains with binary signed digit (BSD) representations of the secret key. However, when such countermeasures have been used alone, most of them have been broken by various simple power analysis attacks. In this paper, we consider combinations which can enhance the security of countermeasures using BSD representations by adding additional countermeasures. First, we propose several ways the improved countermeasures based on BSD representations can be attacked. In an actual statistical power analysis attack, the number of samples plays an important role. Therefore, we estimate the number of samples needed in the proposed attack.

  • PDF

A modification of McFadden's R2 for binary and ordinal response models

  • Ejike R. Ugba;Jan Gertheiss
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.1
    • /
    • pp.49-63
    • /
    • 2023
  • A lot of studies on the summary measures of predictive strength of categorical response models consider the likelihood ratio index (LRI), also known as the McFadden-R2, a better option than many other measures. We propose a simple modification of the LRI that adjusts for the effect of the number of response categories on the measure and that also rescales its values, mimicking an underlying latent measure. The modified measure is applicable to both binary and ordinal response models fitted by maximum likelihood. Results from simulation studies and a real data example on the olfactory perception of boar taint show that the proposed measure outperforms most of the widely used goodness-of-fit measures for binary and ordinal models. The proposed R2 interestingly proves quite invariant to an increasing number of response categories of an ordinal model.

Evolution of primary stars in Pop III binary systems

  • Lee, Hunchul;Yoon, Sung-Chul
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.77.4-78
    • /
    • 2016
  • Binary interactions may have significant impact on Pop III stellar evolution. Pop III single star evolution indicates that for primary masses less than $20M_{\odot}$, no significant binary mass transfer would occur before core helium exhaustion. We perform binary system evolution for various primary masses ($20M_{\odot}$ < $M_1$ < $60M_{\odot}$) and initial periods under same mass ratio $M_2/M_1=0.9$, and follow the evolution and mass transfer of the primary star. If binary mass transfer occurs during post main sequence, the primary star does not evolve into naked helium star and still contain significant hydrogen in the envelope. During the post mass transfer phase, the primary star evolves redward, and does not become sufficiently hot to enhance the number of ionizing photons, compared to the case of single star evolution for a given initial mass. This result implies that primary stars of massive Pop III binary systems would have little contribution to the reionization in the early universe. Given the large hydrogen content ($0.326-1.793M_{\odot}$), the primary stars that underwent stable mass transfers would explode as a Type IIb supernova, and it would be difficult for Pop III binary stars to produce Type Ib/c supernovae that look similar to those found in the local universe.

  • PDF

Phase Behavior of Binary and Ternary Blends Having the Same Chemical Components and Compositions

  • Yoo, Joung-Eun;Kim, Yong;Kim, Chang-Keun;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.303-310
    • /
    • 2003
  • The phase behavior of binary blends of dimethylpolycarbonate-tetramethyl polycarbonate (DMPCTMPC) copolycarbonates and styrene-acrylonitrile (SAN) copolymers has been examined and then compared with that of DMPC/TMPC/SAN ternary blends having the same chemical components and compositions except that the DMPC and TMPC were present in the form of homopolymers. Both binary and ternary blends were miscible at certain blends compositions, and the miscible blends showed the LCST-type phase behavior or did not phase separated until thermal degradation temperature. The miscible region of binary blends is wider than that of the corresponding ternary blends. Furthermore, the phase-separation temperatures of miscible binary blends are higher than those of miscible ternary blends at the same chemical compositions. To explain the destabilization of polymer mixture with the increase of the number of component, interaction energies of binary pairs involved in these blends were calculated from the phase separation temperatures using lattice-fluid theory and then the phase stability conditions for the polymer mixture was analyzed with volume fluctuation thermodynamics.

Interval prediction on the sum of binary random variables indexed by a graph

  • Park, Seongoh;Hahn, Kyu S.;Lim, Johan;Son, Won
    • Communications for Statistical Applications and Methods
    • /
    • v.26 no.3
    • /
    • pp.261-272
    • /
    • 2019
  • In this paper, we propose a procedure to build a prediction interval of the sum of dependent binary random variables over a graph to account for the dependence among binary variables. Our main interest is to find a prediction interval of the weighted sum of dependent binary random variables indexed by a graph. This problem is motivated by the prediction problem of various elections including Korean National Assembly and US presidential election. Traditional and popular approaches to construct the prediction interval of the seats won by major parties are normal approximation by the CLT and Monte Carlo method by generating many independent Bernoulli random variables assuming that those binary random variables are independent and the success probabilities are known constants. However, in practice, the survey results (also the exit polls) on the election are random and hardly independent to each other. They are more often spatially correlated random variables. To take this into account, we suggest a spatial auto-regressive (AR) model for the surveyed success probabilities, and propose a residual based bootstrap procedure to construct the prediction interval of the sum of the binary outcomes. Finally, we apply the procedure to building the prediction intervals of the number of legislative seats won by each party from the exit poll data in the $19^{th}$ and $20^{th}$ Korea National Assembly elections.