• Title/Summary/Keyword: binary and ternary blends

Search Result 15, Processing Time 0.022 seconds

Phase Behavior of Binary and Ternary Blends Having the Same Chemical Components and Compositions

  • Yoo, Joung-Eun;Kim, Yong;Kim, Chang-Keun;Lee, Jae-Wook
    • Macromolecular Research
    • /
    • v.11 no.5
    • /
    • pp.303-310
    • /
    • 2003
  • The phase behavior of binary blends of dimethylpolycarbonate-tetramethyl polycarbonate (DMPCTMPC) copolycarbonates and styrene-acrylonitrile (SAN) copolymers has been examined and then compared with that of DMPC/TMPC/SAN ternary blends having the same chemical components and compositions except that the DMPC and TMPC were present in the form of homopolymers. Both binary and ternary blends were miscible at certain blends compositions, and the miscible blends showed the LCST-type phase behavior or did not phase separated until thermal degradation temperature. The miscible region of binary blends is wider than that of the corresponding ternary blends. Furthermore, the phase-separation temperatures of miscible binary blends are higher than those of miscible ternary blends at the same chemical compositions. To explain the destabilization of polymer mixture with the increase of the number of component, interaction energies of binary pairs involved in these blends were calculated from the phase separation temperatures using lattice-fluid theory and then the phase stability conditions for the polymer mixture was analyzed with volume fluctuation thermodynamics.

Freeze-thaw resistance and sorptivity of self-compacting mortar with ternary blends

  • Turk, Kazim;Kina, Ceren
    • Computers and Concrete
    • /
    • v.21 no.2
    • /
    • pp.149-156
    • /
    • 2018
  • This paper investigated the influence of binary and ternary blends of mineral admixtures in self-compacted mortar (SCM) on the fresh, mechanical and durability properties. For this purpose, 25 mortar mixtures were prepared having a total binder content of $640kg/cm^3$ and water/binder ratio between 0.41 and 0.50. All the mixtures consisted of Portland cement (PC), fly ash (FA) and silica fume (SF) as binary and ternary blends and air-entrained admixture wasn't used while control mixture contained only PC. The compressive and tensile strength tests were conducted for 28 and 91 days as well as slump-flow and V-funnel time tests whilst freeze-thaw (F-T) resistance and capillary water absorption tests were made for 91-day. Finally, in general, the use of SF with FA as ternary blends improved the tensile strength of mortars at 28- and 91-day while the use of SF15 with FA increased the compressive strength of the mortars compared to binary blends of FA. SCM mixtures with ternary blends had lower the sorptivity values than that of the mortars with binary blends of FA and the control mixture due to the beneficial properties of SF while the use of FA with SF as ternary blends induced the F-T resistance enhancement.

A Study on the Commercialization of Polyamide 66/Polypropylene Blend (폴리아마이드 66/폴리프로필렌 블렌드의 상업화 연구)

  • Kim, Seog-Jun;Nam, Byeong-Uk
    • Elastomers and Composites
    • /
    • v.38 no.3
    • /
    • pp.262-272
    • /
    • 2003
  • Maleic anhydride-grafted-polypropylene(PP-g-MA) were used as a blend component and a compatibilizer, respectively, for two reactive blends of polyamide 66(PA 66)PP-g-MA binary blends and PA 66/polypropylene(PP)/PP-g-MA ternary blends. The goal of this work was to investigate the property differences between binary and ternary blends. Tensile strength, flexural modulus, heat deflection temperature, impact strength, melt flow index, and the dependence of melt viscosity on the shear rate were examined. The impact strengths of binary blends were higher than those of ternary blends at all compositions, since the in situ synthesis of PP-g-PA 66 copolymer through the imide formation between the amine end group of PA 66 and the anhydride group of PP-g-MA gave the increase of molecular weight and was more popular in binary blends than in ternary blends. In case of ternary blends, most of the properties were superior to those of binary blends, owing to the better properties of PP compared with PP-g-MA. The toughened binary blends with 70/30(PA 66/PP-g-MA) and 80/20 ratios were not commercially applicable due to their poor processibility. So, the ternary blends which showed lower melt viscosities were recommended for the commercial applications.

Predicting sorptivity and freeze-thaw resistance of self-compacting mortar by using deep learning and k-nearest neighbor

  • Turk, Kazim;Kina, Ceren;Tanyildizi, Harun
    • Computers and Concrete
    • /
    • v.30 no.2
    • /
    • pp.99-111
    • /
    • 2022
  • In this study, deep learning and k-Nearest Neighbor (kNN) models were used to estimate the sorptivity and freeze-thaw resistance of self-compacting mortars (SCMs) having binary and ternary blends of mineral admixtures. Twenty-five environment-friendly SCMs were designed as binary and ternary blends of fly ash (FA) and silica fume (SF) except for control mixture with only Portland cement (PC). The capillary water absorption and freeze-thaw resistance tests were conducted for 91 days. It was found that the use of SF with FA as ternary blends reduced sorptivity coefficient values compared to the use of FA as binary blends while the presence of FA with SF improved freeze-thaw resistance of SCMs with ternary blends. The input variables used the models for the estimation of sorptivity were defined as PC content, SF content, FA content, sand content, HRWRA, water/cementitious materials (W/C) and freeze-thaw cycles. The input variables used the models for the estimation of sorptivity were selected as PC content, SF content, FA content, sand content, HRWRA, W/C and predefined intervals of the sample in water. The deep learning and k-NN models estimated the durability factor of SCM with 94.43% and 92.55% accuracy and the sorptivity of SCM was estimated with 97.87% and 86.14% accuracy, respectively. This study found that deep learning model estimated the sorptivity and durability factor of SCMs having binary and ternary blends of mineral admixtures higher accuracy than k-NN model.

Rheology and Tensile Properties of EPDM/Polyolefin Blends (EPDM과 폴리올레핀 블렌드의 레올로지와 인장물성(引張物性))

  • Ha, Chang-Sik;Ryou, Jin-Ho;Kang, Dong-Il;Cho, Won-Jei
    • Elastomers and Composites
    • /
    • v.25 no.3
    • /
    • pp.203-210
    • /
    • 1990
  • The structure and properties of blends of ethylene-propylene-diene terpolymer(EPDM) and polyolefin blends have been investigated. The rheology and tensile properties of the EPDM/HDPE(high density polyethylene), EPDM/PP(polypropylene) binary and EPDM/PP/HDPE ternary blends were studied along with morphological analyses. Those properties were affected by preferential interaction of EPDM on HDPE, compared to that of EPDM on PP, for the binary blends. The preferetial interaction may stem from the molecular characteristics of EPDM to possess more ethylene units than propylene units in the elastomer. The EPDM played a role as compatibilizer for HDPE and PP in the EPDM/PP/HDPE ternary blends.

  • PDF

Experimental Investigation of Electrochemical Corrosion and Chloride Penetration of Concrete Incorporating Colloidal Nanosilica and Silica Fume

  • Garg, Rishav;Garg, Rajni;Singla, Sandeep
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.4
    • /
    • pp.440-452
    • /
    • 2021
  • Enhancement of durability and reduction of maintenance cost of concrete, with the implementation of various approaches, has always been a matter of concern to researchers. The integration of pozzolans as a substitute for cement into the concrete is one of the most desirable technique. Silica fume (SF) and colloidal nanosilica (CS) have received a great deal of interest from researchers with their significant performance in improving the durability of concrete. The synergistic role of the micro and nano-silica particles in improving the main characteristics of cemented materials needs to be investigated. This work aims to examine the utility of partial substitution of cement by SF and CS in binary and ternary blends in the improvement of the durability characteristics linked to resistance for electrochemical corrosion using electrical resistivity and half-cell potential analysis and chloride penetration trough rapid chloride penetration test. Furthermore, the effects of this silica mixture on the compressive strength of concrete under normal and aggressive environment have also been investigated. Based on the maximum compression strength of the concrete, the optimal cement substituent ratios have been obtained as 12% SF and 1.5% CS for binary blends. The optimal CS and SF combination mixing ratios has been obtained as 1.0% and 12% respectively for ternary blends. The ternary blends with substitution of cement by optimal percentage of CS and SF exhibited decreased rate for electrochemical corrosion. The strength and durability studies were found in consistence with the microstructural analysis signifying the beneficiary role of CS and SF in upgrading the performance of concrete.

Properties of PA 6,6/Elastomer Blends with Various Elastomer Content (탄성중합체 함유량 변화에 따른 폴리아미드-6,6/탄성중합체 블랜드물의 특성)

  • Lee, Yoong;Lee, Chang-Woo;Cho, Yoon-Ho;Hahm, Yeong-Min
    • Elastomers and Composites
    • /
    • v.34 no.1
    • /
    • pp.20-30
    • /
    • 1999
  • In this study, binary polyamide 6,6(PA 6,6)/ethylene-propylene rubber(EPM) or EPM-g-maleic anhydride(EPM-g-MA) blends and ternary PA 6,6/EPM/EPM-g-MA blends with various elastomer content were prepared in order to investigate the degree of influence of elastomer content and average particle size, morphology, and distribution of dispersed elastomer on mechanical and thermal properties of blends. According to the results, notched Izod impact strength and relative crystallinity of binary blends modified with EPM-g-MA as well as average particle size and distribution of dispersed elastomer in such blends were more improved than those of binary blends modified with EPM. Notched Izod impact strength of blend whose composition ratio(wt % ) was 70:30(PA 6,6 : EPM-g-MA) was the highest among the binary PA 6,6/EPM-g-MA blends. The impact strength was increased by 25 times and its relative crystallinity was increased by 7 times when compared with those of polyamide 6,6. In the case of ternary PA 6,6/EPM/EPM-g-MA blend of which composition ratio was 70:15:15(PA 6,6:EPM:EPM-g-MA), the elastomer was finely distributed with the average particle size of $0.56{\mu}m$. The Izod impact strength of this blend was the highest of all blends prepared with different elastomer content.

  • PDF

Relationships between Morphologies and Properties of PA 6,6/EPM/EPM-g-MA Blends (PA 6,6/EPM/EPM-g-MA 블렌드물의 특성과 Morphology 관계)

  • Lee, Yoong;Lee, Chang-Woo;Chang, Yoon-Ho;Hahm, Yeong-Min
    • Applied Chemistry for Engineering
    • /
    • v.10 no.5
    • /
    • pp.682-689
    • /
    • 1999
  • In this study, binary PA 6,6/EPM(or EPM-g-MA) blends and ternary PA 6,6/EPM/EPM-g-MA blends were fabricated according to the variation in elastomer content and composition ratio of blend, and mixing temperature and rate so as to investigate the degree of influence of elastomer content and average particle size, morphology, and distribution of dispersed elastomer on properties of blends. As results, under the constant mixing rate(250 rpm) and different five section temperature profiles(270-265-265-255-$255^{\circ}C$) in extruder, high notched Izod impact strength was the property of PA 6,6/EPM-g-MA(70/30) blend among binary blends. Notched Izod impact strength of this blend was 25 times improvement compared with that of polyamide 6,6. In addition, elastomer average particle size of ternary PA 6,6/EPM/EPM-g-MA(70/15/15) blend was $0.56{\mu}m$, which was fine distribution, and notched Izod impact strength of that blend was the highest of all blends prepared with the variation in elastomer content. But the properties of this ternary blend were decreased remarkably at the diverse mixing temperatures and mixing rates.

  • PDF

Effect of Chlorinated Polyethylene(cPE) on Morphology and Mechanical Properties of Polypropylene(PP) and Nitrile Rubber(NBR) Blends (염소화폴리에틸렌의 첨가가 폴리프로필렌-니트릴 고무 블렌드의 모폴로지 및 기계적물성에 미치는 영향)

  • Chang, Young-Wook;Won, Jong-Hoon;Joo, Hyun-Seok;Chung, Kyung-Ho
    • Elastomers and Composites
    • /
    • v.40 no.3
    • /
    • pp.204-211
    • /
    • 2005
  • Effect of chlorinated polyethylene(cPE) on the morphology and mechanical properties of isotactic polypropylene(iPP) and nitrile rubber(NBR) blends was investigated. It was found that incorporation of a small amounts of cPE leads to a decrease in domain size of the dispersed phase, and uniform distribution of the dispersed phase in the blends. The PP/NBR/cPE ternary blends showed an improved tensile and tear strength as well as elongation-at-break as compared to binary PP/NBR blends. From the results on morphology and mechanical properties, optimum amount of the cPE is 5-10 wt% with repect to NBR in the blend.

Mechanical properties of SFRHSC with metakaolin and ground pumice: Experimental and predictive study

  • Saridemir, Mustafa;Severcan, Metin Hakan;Celikten, Serhat
    • Steel and Composite Structures
    • /
    • v.23 no.5
    • /
    • pp.543-555
    • /
    • 2017
  • The mechanical properties of steel fiber reinforced high strength concrete (SFRHSC) made with binary and ternary blends of metakaolin (MK) and ground pumice (GP) are investigated in this study. The investigated properties are ultrasonic pulse velocity ($U_{pv}$), compressive strength ($f_c$), flexural strength ($f_f$) and splitting tensile strength ($f_{st}$) of SFRHSC. A total of 16 steel fiber reinforced concrete mixtures were produced by a total binder content of $500kg/m^3$ for determining the effects of MK and GP on the mechanical properties. The design $f_c$ was acquired from 70 to 100 MPa by using a low water-binder ratio of 0.2. The test results exhibit that high strength concrete can be obtained by replacing the cement with MK and GP. Besides, correlations between these results are executed for comprehending the relationship between mechanical properties of SFRHSC and the strong correlations are observed between these properties. Moreover, two models in the gene expression programming (GEP) for predicting the $f_c$ of SFRHSC made with binary and ternary blends of MK and GP have been developed. The results obtained from these models are compared with the experimental results. These comparisons proved that the results of equations obtained from these models seem to agree with the experimental results.