• Title/Summary/Keyword: binarization

Search Result 369, Processing Time 0.023 seconds

Ultrasonic Cavitation Effect Observation Using Bubble Cloud Image Analysis (기포군 영상분석을 통한 초음파 캐비테이션 현상의 변화 관찰)

  • Noh, Si-Cheol;Kim, Ju-Young;Kim, Jin-Su;Kang, Jung-Hoon;Choi, Heung-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.2
    • /
    • pp.124-130
    • /
    • 2011
  • In this study, in order to evaluate the yield of bubble by ultrasonic cavitation in HIFU sonication, the bubble image analysis was performed. The changing phenomenon of cavitation effect according to the sonication condition was discussed by analyzing the bubble image. Especially the appearance of bubble cloud, the size of micro-bubble, and the yield of bubble were considered. The 500 KHz and 1.1 MHz concave type ultrasonic transducers were used for HIFU sonication. Computer controlled digital camera was used to obtain the bubble image, and the binary image processing(binarization coefficient : 0.15) was performed to analyze them. In results of 500 KHz and 1.1 MHz transducer, the area of bubble cloud was increased in proportion to the rise in sonication intensity($R^2$ : 0.7031 and 0.811). The mean size of single microbubble was measured as 98.18 um in 500 KHz sonication, and 63.38 um in 1.1 MHz sonication. In addition, the amount of produced bubble was increased in proportion to sonication intensity. Through the result of this study and further study for variable image processing method, the quantitative evaluation of ultrasonic cavitation effects in HIFU operation could be possible with the linearity associated with the sonication conditions.

A Study on Performance Improvement of Business Card Recognition in Mobile Environments (모바일 환경에서의 명함인식 성능 향상에 관한 연구)

  • Shin, Hyunsub;Kim, Chajong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.2
    • /
    • pp.318-328
    • /
    • 2014
  • In this paper, as a way of performance improvement of business card recognition in the mobile environment, we suggested a hybrid OCR agent which combines data using a parallel processing sequence between various algorithms and different kinds of business card recognition engines which have learning data. We also suggested an Image Processing Method on mobile cameras which adapts to the changes of the lighting, exposing axis and the backgrounds of the cards which occur depending on the photographic conditions. In case a hybrid OCR agent is composed by the method suggested above, the average recognition rate of Korean business cards has improved from 90.69% to 95.5% compared to the cases where a single engine is used. By using the Image Processing Method, the image capacity has decreased to the average of 50%, and the recognition has improved from 83% to 92.48% showing 9.4% improvement.

A Study on Recognition of Both of New & Old Types of Vehicle Plate (신, 구 차량 번호판 통합 인식에 관한 연구)

  • Han, Kun-Young;Woo, Young-Woon;Han, Soo-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.1987-1996
    • /
    • 2009
  • Recently, the color of vehicle license plate has been changed from green to white. Thus the vehicle plate recognition system used for parking management systems, speed and signal violation detection systems should be robust to the both colors. This paper presents a vehicle license plate recognition system, which works on both of green and white plate at the same time. In the proposed system, the image of license plate is taken from a captured vehicle image by using morphological information. In the next, each character region in the license plate image is extracted based on the vertical and horizontal projection of plate image and the relative position of individual characters. Finally, for the recognition process of extracted characters, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis) are sequentially utilized. In the experiment, vehicle license plates of both green background and white background captured under irregular illumination conditions have been tested, and the relatively high extraction and recognition rates are observed.

Machine-printed Numeral Recognition using Weighted Template Matching with Chain Code Trimming (체인 코드 트리밍과 가중 원형 정합을 이용한 인쇄체 숫자 인식)

  • Jung, Min-Chul
    • Journal of Intelligence and Information Systems
    • /
    • v.13 no.4
    • /
    • pp.35-44
    • /
    • 2007
  • This paper proposes a new method of weighted template matching for machine-printed numeral recognition. The proposed weighted template matching, which emphasizes the feature of a pattern using adaptive Hamming distance on local feature areas, improves the recognition rate while template matching processes an input image as one global feature. Template matching is vulnerable to random noises that generate ragged outlines of a pattern when it is binarized. This paper offers a method of chain code trimming in order to remove ragged outlines. The method corrects specific chain codes within the chain codes of the inner and the outer contour of a pattern. The experiment compares confusion matrices of both the template matching and the proposed weighted template matching with chain code trimming. The result shows that the proposed method improves fairly the recognition rate of the machine-printed numerals.

  • PDF

Multiple Moving Objects Detection and Tracking Algorithm for Intelligent Surveillance System (지능형 보안 시스템을 위한 다중 물체 탐지 및 추적 알고리즘)

  • Shi, Lan Yan;Joo, Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.741-747
    • /
    • 2012
  • In this paper, we propose a fast and robust framework for detecting and tracking multiple targets. The proposed system includes two modules: object detection module and object tracking module. In the detection module, we preprocess the input images frame by frame, such as gray and binarization. Next after extracting the foreground object from the input images, morphology technology is used to reduce noises in foreground images. We also use a block-based histogram analysis method to distinguish human and other objects. In the tracking module, color-based tracking algorithm and Kalman filter are used. After converting the RGB images into HSV images, the color-based tracking algorithm to track the multiple targets is used. Also, Kalman filter is proposed to track the object and to judge the occlusion of different objects. Finally, we show the effectiveness and the applicability of the proposed method through experiments.

Detection and Recognition of Uterine Cervical Carcinoma Cells in Pap Smear Using Kapur Method and Morphological Features (Kapur 방법과 형태학적 특징을 이용한 자궁경부암 세포 추출 및 인식)

  • Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1992-1998
    • /
    • 2007
  • It is important to obtain conn cytodiagnosis to classify background, cytoplasm, and nucleus from the diagnostic image. This study mose an algorithm that detects and classifies carcinoma cells of the uterine cervix in Pap smear using features of cervical cancer. It applies Median filter and Gaussian filter to get noise-removed nucleus area and also applies Kapur method in binarization of the resultant image. We apply 8-directional contour tracking algorithm and stretching technique to identify and revise clustered cells that often hinder to obtain correct analysis. The resulted nucleus area has distinguishable features such as cell size, integration rate, and directional coefficient from normal cells so that we can detect and classify carcinoma cells successfully. The experiment results show that the performance of the algorithm is competitive with human expert.

Recognition of Resident Registration Cards Using ART-1 and PCA Algorithm (ART-1과 PCA 알고리즘을 이용한 주민등록증 인식)

  • Park, Sung-Dae;Woo, Young-Woon;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.9
    • /
    • pp.1786-1792
    • /
    • 2007
  • In this paper, we proposed a recognition system for resident registration cards using ART-1 and PCA algorithm. To extract registration numbers and issue date, Sobel mask and median filter are applied first and noise removal follows. From the noise-removed image, horizontal smearing is used to extract the regions, which are binarized with recursive binarization algorithm. After that vortical smearing is applied to restore corrupted lesions, which are mainly due to the horizontal smearing. from the restored image, areas of individual codes are extracted using 4-directional edge following algorithm and face area is extracted by the morphologic characteristics of a registration card. Extracted codes are recognized using ART-1 algorithm and PCA algorithm is used to verify the face. When the proposed method was applied to 25 real registration card images, 323 characters from 325 registration numbers and 166 characters from 167 issue date numbers, were correctly recognized. The verification test with 25 forged images showed that the proposed verification algorithm is robust to detect forgery.

Curriculum Mining Analysis Using Clustering-Based Process Mining (군집화 기반 프로세스 마이닝을 이용한 커리큘럼 마이닝 분석)

  • Joo, Woo-Min;Choi, Jin Young
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.45-55
    • /
    • 2015
  • In this paper, we consider curriculum mining as an application of process mining in the domain of education. The basic objective of the curriculum mining is to construct a registration pattern model by using logs of registration data. However, subject registration patterns of students are very unstructured and complicated, called a spaghetti model, because it has a lot of different cases and high diversity of behaviors. In general, it is typically difficult to develop and analyze registration patterns. In the literature, there was an effort to handle this issue by using clustering based on the features of students and behaviors. However, it is not easy to obtain them in general since they are private and qualitative. Therefore, in this paper, we propose a new framework of curriculum mining applying K-means clustering based on subject attributes to solve the problems caused by unstructured process model obtained. Specifically, we divide subject's attribute data into two parts : categorical and numerical data. Categorical attribute has subject name, class classification, and research field, while numerical attribute has ABEEK goal and semester information. In case of categorical attribute, we suggest a method to quantify them by using binarization. The number of clusters used for K-means clustering, we applied Elbow method using R-squared value representing the variance ratio that can be explained by the number of clusters. The performance of the suggested method was verified by using a log of student registration data from an 'A university' in terms of the simplicity and fitness, which are the typical performance measure of obtained process model in process mining.

Robust Hand Region Extraction Using a Joint-based Model (관절 기반의 모델을 활용한 강인한 손 영역 추출)

  • Jang, Seok-Woo;Kim, Sul-Ho;Kim, Gye-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.525-531
    • /
    • 2019
  • Efforts to utilize human gestures to effectively implement a more natural and interactive interface between humans and computers have been ongoing in recent years. In this paper, we propose a new algorithm that accepts consecutive three-dimensional (3D) depth images, defines a hand model, and robustly extracts the human hand region based on six palm joints and 15 finger joints. Then, the 3D depth images are adaptively binarized to exclude non-interest areas, such as the background, and accurately extracts only the hand of the person, which is the area of interest. Experimental results show that the presented algorithm detects only the human hand region 2.4% more accurately than the existing method. The hand region extraction algorithm proposed in this paper is expected to be useful in various practical applications related to computer vision and image processing, such as gesture recognition, virtual reality implementation, 3D motion games, and sign recognition.

Recognition Performance Improvement of QR and Color Codes Posted on Curved Surfaces (곡면상에 부착된 QR 코드와 칼라 코드의 인식률 개선)

  • Kim, Jin-soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.3
    • /
    • pp.267-275
    • /
    • 2019
  • Currently, due to the widespread use of a smartphone, QR codes allow users to access a variety of added services. However, the QR codes posted on curved surfaces tend to be non-uniformly illuminated and bring about the decline of recognition rate. So, in this paper, the block-adaptive binarization policy is adopted to find an optimal threshold appropriate for bimodal image like QR codes. For a large block, its histogram distribution is found to get an initial threshold and then the block is partitioned to reflect the local characteristics of small blocks. Also, morphological operation is applied to their neighboring boundary at the discontinuous at the QR code junction. This paper proposes an authentication method based on the color code, uniquely painted within QR code. Through a variety of practical experiments, it is shown that the proposed algorithm outperforms the conventional method in detecting QR code and also maintains good recognition rate up to 40 degrees on curved surfaces.