• Title/Summary/Keyword: billet

Search Result 339, Processing Time 0.026 seconds

Die Life Estimation of Hot Forging for Surface Treatment and Lubricants (표면처리 및 윤활제에 따른 열간 단조 금형의 수명 평가)

  • 이현철;김병민;김광호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.7
    • /
    • pp.26-35
    • /
    • 2003
  • This study explains the effects of lubricant and surface treatment on hot forging die life. The mechanical and thermal load, and thermal softening which is happened by the high temperature of die, in hot and warm forging, cause die wear, heat checking and plastic deformation, etc. This study is fur the effects of solid lubricants and surface treatment condition for hot forging die. Because cooling effect and low friction are essential to the long life of dies, optimal surface treatment and lubricant are very important to improve die life for hot forging process. The main factors, which affect die hardness and heat transfer, are surface treatments and lubricants, which are related to thermal diffusion coefficient and heat transfer coefficient, etc. For verifying these effects, experiments are performed for hot ring compression test and heat transfer coefficient in various conditions as like different initial billet temperatures and different loads. The effects of lubricant and surface treatment for hot forging die life are explained by their thermal characteristics. The new developed technique in this study for predicting tool life can give more feasible means to improve the tool life in hot forging process.

Effect of Alloying Elements on Mechanical Properties and Microstructure of Steel Bar Fabricated by Endless Bar Rolling System with Flash Butt Welding (플래시버트 용접과 연속열간압연법으로 제조된 철근의 기계적 성질과 미세조직에 미치는 합금원소의 영향)

  • Kim, Ki-Won;Cho, Seung-Jae;Kang, Chung-Yum
    • Journal of Welding and Joining
    • /
    • v.27 no.3
    • /
    • pp.52-59
    • /
    • 2009
  • Flash butt welding is applied in many industries. New technology was developed recently for joining billets which called "EBROS (Endless Bar Rolling System)". After reheating billets in furnace, two billets were joined using flash butt welding. The objective of this study was to investigate the effect of alloying elements on mechanical properties of flash butt welded zone of hot rolled steel bar. The tensile properties on welded zone of Fe-Mn steel and Fe-Mn-V steel were dropped as compared with non-welded zone. Fe-Mn-Nb steel was opposed to the former. It was found that the white band at the welded zone had high ferrite volume fraction and large ferrite grain size. The vertical white band between flash butt welded billets was transformed into an arrowhead it of steel bar. According to this band, softening has been appeared. There was a interesting phenomenon with HAZ of Fe-Mn-Nb Steel, 40nm scale of particles were observed and hardness of HAZ was higher than non-welded zone.

Analysis and Design of a Forming Porcess for Combined Extrusion with Aluminum AIIoy 7075 (알루미늄 7075 복합압출재에 대한 공정해석 및 설계)

  • 김진복;변상규
    • Transactions of Materials Processing
    • /
    • v.6 no.5
    • /
    • pp.446-455
    • /
    • 1997
  • A Combined extrusion operation consists of forward and backward extrusion forming and it is possible to make the process be simple by employing it. But the metal flow pattern induced by the operation is hard to analyze accurately because the flows are non-steady, which have at least two directions dependent upon each other. So engineers in the industrial factories had conducted the two extrusion operations separately. A new process was designed by the industrial expert for forming of an alu-minum preform using the combined extrusion operation. In this study, experiments and finite element analysis was carried out to determine the process parameters. Through the preliminary experiment, it was shown that warm forming condition was more desirable than cold or hot ones. And optimal shape of initial billet could be also determined. From the compatibility test, bonde-lube was chosen as the optimal lubricant and 20$0^{\circ}C$ as the material temperature by the inspection of micro-structure. The operation was simulated by the rigid-plastic finite element method to examine the metal flow. Disap-pearing of dead metal zone was observed as the punch fell down and desirable shape was obtained from the one operation. As a result of this study, 7 operations could be reduced and 225% of material saved.

  • PDF

Effects of Controlled Cooling on Microstructures and Mechanical Properties of a Steel for Cold Forming (냉간성형용 강의 미세조직과 기계적성질에 미치는 제어냉각의 영향)

  • Kim N. G.;Park S. D.;Kim B. O.;Choi H. J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.391-394
    • /
    • 2004
  • The main purpose of the present study has been placed on investigating the effects of controlled cooling on the microstructures and mechanical properties of 0.2C-0.2Si-0.8Mn-B steel for cold forming. The steel was processed in steel making factory(EAF, VD) and casted to $\Box160$ billet then reheated in walking beam furnace and rolled to coil, rolling stock was acceleratly cooled before coiling. Microstructual observation, tensile test and charpy impact tests were conducted. The mechanical properties and microsture of the steel were changed by cooling condition. The grain size of rolled product decreased with increasing cooling rate, resulting in increase of impact toughness and tensile strength, elongation and reduction of area . From the result of this study, it is conformed that mechanical properties and microstructure of 0.2C-0.2Si-0.8Mn-B steel for cold forming were enhanced by accelerated cooling.

  • PDF

EFFECTS OF PROCESS PARAMETERS ON GRAIN SIZE DURING ISOTHERMAL FORGING OF A TC6 ALLOY

  • Miaoquan LI;Aiming XIONG;Shankun XUE;Yuanchun LI;Hai LIN;Hairong WANG;Shaobo SU;Lichuang SHEN
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.47-50
    • /
    • 2003
  • Grain size of the $\alpha$ phase is computed during isothermal forging of the TC6 aerofoil blade, by combining FE with the Yada's model of grain size. The present results illustrate the grain size and distribution of the $\alpha$ phase during isothermal forging of the TC6 aerofoil blade' in detail. The computed results show that height reduction, deformation temperature, hammer velocity and friction have significant effect on distribution of the equivalent strain, and that height reduction, deformation temperature and hammer velocity have more significant effect on grain size of the $\alpha$ phase than friction between billet and die.

  • PDF

FE TECHNIQUES TO IMPROVE PREDICTION ACCURACY OF DIMENSION FOR COLD FORGED PART

  • Lee Y.S.;Lee J.H.;Kwon Y.N.;Ishikawa T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.26-30
    • /
    • 2003
  • Since the dimension of cold forged part is larger than the cavity size of forging die, the difference results from the various features, such as, the elastic characteristics of die and workpiece, thermal influences, and machine-elasticity. All of these factors should be considered to get more accurate prediction of the dimension of forged part. In this paper, severe FE techniques are proposed to improve the prediction accuracy of dimension for cold forged part. To validate the importance of the above mentioned factors, and the estimated results are compared with the experimental results. The used model is a closed die upsetting of cylindrical billet. The calculated dimensions are well coincided with .the measured values based on the proposed techniques. The proposed techniques have put two simple but important points into Fe simulation. One is the separation of forging stages into 3 steps, from a loading through punch retraction to ejecting stage. The other is the dimensional change, according to the temperature changes due to the deformation. The FE analysis could predict the dimension of cold forged part within the $10{\mu}m$, based on the more realistic consideration.

  • PDF

Ring-Rolling Design of a Large-Scale Ti-6Al-4V alloy (대형 Ti-6Al-4V 합금의 Ring-Rolling 공정설계)

  • Yeom, J.T.;Jung, E.J.;Kim, J.H.;Lee, D.G.;Park, N.K.;Choi, S.S.;Lee, C.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.373-376
    • /
    • 2006
  • The ring rolling design for a large-scale Ti-6Al-4V alloy ring was performed with a calculation method and FEM simulation. The ring rolling design includes geometry design and optimization of process variables. The calculation method was to determine geometry design such as initial billet and blank size, and final rolled ring shape. A commercial FEM code, SHAPE was used to simulate the effect of process variables in ring rolling on the distribution of the internal state variables such as strain, strain rate and temperature. In order to predict the forming defects during ring rolling, the process-map approach based on Ziegler's instability criterion was used with FEM simulation. Finally, an optimum process design to obtain sound Ti-6Al-4V rings without forming defects was suggested through combined approach of Ziegler's instability map and FEM simulation results.

  • PDF

Study on the Lubrication Characteristics at the Elevated Temperature in Hot Forging Test with Extruded AZ80 Mg Alloy (AZ80 압출재를 이용한 고온단조 윤활특성 분석)

  • Yoon, J.H.;Lee, S.I.;Jeon, H.W.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.22 no.2
    • /
    • pp.108-113
    • /
    • 2013
  • This paper demonstrates the lubricant performance in T-shape hot forging of Mg alloys. This processes induces complex plastic material flow of the initial billet such as simultaneous compression and extrusion deformations. Five lubricants with different amounts of graphite are applied to the T-shape forging at temperatures of 300 and $350^{\circ}C$. As the amount of graphite in the lubricant increases, the extruded depth gradually increases, which improves hot forgeability for Mg alloys. However, the lubricant performance decreases as forging temperature increases from 300 to $350^{\circ}C$. As the punch stroke increases, forgeability is considerably influenced by the lubricant. Thus, the selection of lubricants in hot forging of Mg alloys is critical when plastic deformation is severe.

Finite Element Analysis of the Effect of Centering Groove on Tip Test (센터링 홈이 팁 시험법에 미치는 영향에 대한 유한요소해석)

  • Kang, Seong-Hoon;Im, Yong-Taek
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1340-1347
    • /
    • 2002
  • Finite element simulations are being widely used to increase the efficiency and effectiveness of design of bulk metal forming processes. In such simulations, proper consideration of friction condition is crucial in obtaining reliable results. For this purpose, tip test based on backward extrusion was proposed recently. In this lest, a cylindrical billet is positioned in a shallow groove of a counter punch for centering purpose and formation of a radial tip is induced on the extruded end of the workpiece. In this study, the effect of centering groove on tip test was investigated. The quantitative ratio of the shear friction factors between the punch and die was numerically determined depending on the shape of centering groove. Also, surface expansion and pressure distribution along the punch and die were considered in order to better understand the reason that friction condition at the punch compared to the one of die was more severe.

Development of Thixoextrusion Process for Light Alloys - Part 1. Microstructural Control of Light Alloys for Thixoextrusion (경량합금 반용융 압출 기술 개발 - Part 1. 반융용 압출을 위한 조직제어)

  • Kim, Shae-K.;Yoon, Young-Ok;Jang, Dong-In;Jo, Hyung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.26 no.5
    • /
    • pp.211-216
    • /
    • 2006
  • The study for thixoextrusion process of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy was carried out with respect to reheating rate, isothermal holding temperature and time with an emphasis to the effect of homogenization on thixotropic micro-structures during the partial remelting, especially in the low liquid fraction ($f_L<0.2$). The liquid fraction and average grain size with respect to reheating profile such as reheating rate, isothermal holding temperature and time were almost uniform. It is considered very useful for thixoextrusion in terms of process control such as billet temperature control and actual extrusion time. Micro-structural controls of 7075, 7003 Al wrought alloys and AZ31 Mg wrought alloy before and after homogenization were available and thixotropic microstructures were obtained in both specimens.