• 제목/요약/키워드: bile

검색결과 1,270건 처리시간 0.03초

담즙산의 생체 활성 물질로서의 역할 (Roles of Bile Acid as an Active Biological Substance)

  • 방준석;이유정;정지훈;손의동
    • 한국임상약학회지
    • /
    • 제21권2호
    • /
    • pp.49-56
    • /
    • 2011
  • The family of bile acids belongs to a group of molecular species of acidic steroids with very peculiar biological characteristics. They are synthesized by the liver from cholesterol through several complementary pathways and secreted into small intestine for the participation in the digestion and absorption of fat. The bile acids are mostly confined to the territories of the so-called enterohepatic circulation, which includes the liver, the biliary tree, the intestine and the portal blood with which bile acids are returned to the liver. In patients with bile acid malabsorption, the amount of primary bile acids in the colon is increased compared to healthy controls. Although the increase in the secondary bile acids including deoxycholic acid, is reported to have the potency to affect tumorigenesis in gastrointestinal tracts, there is no firm evidence that clinically relevant concentrations of the bile acids induce cancer. The list of their physiological roles, as well as that of the pathological processes is long and still not complete. There is no doubt that many new concepts, pharmaceutical tools and pharmacological uses of bile acids and their derivatives will emerge in the near future.

Bile Acid Modulation of Gastroinstinal Smooth Muscle Contraction and Ionic Currents

  • Lee, Hye-Kyung;Lee, Kyoung-Hwa
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권4호
    • /
    • pp.333-338
    • /
    • 2000
  • We have examined whether bile acids can affect the electrical and mechanical activities of circular smooth muscle of canine colon and ileum, using isometric tension measurement or patch clamp technique. It was found that a dilution of canine bile $(0.03{\sim}2%\;by\;volume)$ enhanced or inhibited the amplitude of spontaneous contractions. An individual component of bile, deoxycholic acid (DCA) enhanced the frequency and amplitude of the spontaneous contractile activity at $10^{-6}\;M,$ while DCA at $10^{-4}\;M$ inhibited the contraction. Similarly, the response to cholic acid was excitatory at $10^{-5}\;M$ and inhibitory at $3{\times}10^{-4}\;M.$ Taurocholic acid at $10^{-4}\;M$ enhanced the amplitude of muscle contraction. Electrically, canine bile at 1% reversibly depolarized the colonic myocytes under current clamp mode. Bile acids also elicited non-selective cation currents under voltage clamp studies, where $K^+$ currents were blocked and the $Cl^-$ gradient was adjusted so that $E_{Cl}^-$ was equal to -70 mV, a holding potential. The non-selective cation current might explain the depolarization caused by bile acids in intact muscles. Furthermore, the bile acid regulation of electrical and mechanical activities of intestinal smooth muscle may explain some of the pathophysiological conditions accompanying defects in bile reabsorption.

  • PDF

Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis

  • Kim, Hyeonhui;Fang, Sungsoon
    • Laboraroty Animal Research
    • /
    • 제34권4호
    • /
    • pp.140-146
    • /
    • 2018
  • Though bile acids have been well known as digestive juice, recent studies have demonstrated that bile acids bind to their endogenous receptors, including Farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1; TGR5) and serve as hormone to control various biological processes, including cholesterol/bile acid metabolism, glucose/lipid metabolism, immune responses, and energy metabolism. Deficiency of those bile acid receptors has been reported to induce diverse metabolic syndromes such as obesity, hyperlipidemia, hyperglycemia, and insulin resistance. As consistent, numerous studies have reported alteration of bile acid signaling pathways in type II diabetes patients. Interestingly, bile acids have shown to activate TGR5 in intestinal L cells and enhance secretion of glucagon-like peptide 1 (GLP-1) to potentiate insulin secretion in response to glucose. Moreover, FXR has been shown to crosstalk with TGR5 to control GLP-1 secretion. Altogether, bile acid receptors, FXR and TGR5 are potent therapeutic targets for the treatment of metabolic diseases, including type II diabetes.

시호가 총담관결찰 및 Taurocholate 부하 흰쥐 간의 COMT 활성에 미치는 영향 (Effects of Bupleuri Radix on Rat Hepatic COMT by Common Bile Duct Ligation and Taurocholate Load after Common Bile Duct Ligation)

  • 김승모;윤주현;박재현
    • 대한한의학회지
    • /
    • 제21권3호
    • /
    • pp.68-76
    • /
    • 2000
  • Object : This study was earned out to examine the effect of Bupleuri Radix on experimental cholestasis, and make clear a part of this mechanism. Methods : Two models of common bile duct ligation group and taurocholate load group after common bile duct ligation were induced, and Bupleuri Radix extract was taken orally for 14 days. In the 1, 2, 4, 7 and l4days after treatment, cytosolic, mitochondrial and microsomal catechol-O-methyltransferase(COMT) activities in liver were measured. Results : The activities of cytosolic, mitochondrial and microsomal COMT increased in the Blupleuri Radix treated group after common bile duct ligation and after taurocholate load and common bile duct ligation. The activities of cytosolic and mitochondrial COMT increased particularly in Blupleuri Radix treated group after taurocholate load and common bile duct ligation. Conclusions : According to the result, it is considered that Blupleuri Radix not only improves cholestatis in liver, but also decreases a genetic synthesis of taurocholic acid.

  • PDF

Lactobacillus acidophilus의 복합담즙산염 분해 (Deconjugation of Bile Salts by Lactobacillus acidophilus)

  • 임광세;백영진;임정현;김현욱;안영태
    • Journal of Dairy Science and Biotechnology
    • /
    • 제22권1호
    • /
    • pp.13-25
    • /
    • 2004
  • 담즙산은 cholesterol의 대사산물로 체내에서 cholesterol을 제거하는 주경로로서, 체내 cholesterol 대사를 조절하는 중요한 수단이다. 최근에 복합담즙산 분해활력이 높은 L. acidophilus에 의한 혈중 cholesterol 저하효과에 관한 많은 연구들이 보고되고 있으며, 이것은 복합담즙산의 분해로 생성되는 유리 담즙산의 분 배출 증가와 장내 cholesterol 흡수에 필요한 복합 micelle 형성의 방해에 의한 것으로 알려져 있다. 즉, 유리 담즙산은 장내에서 복합담즙산보다 용해성이 낮아서 흡수되지 않고 분으로 배출되기 쉬워, 간에서는 분으로 배출된 양만큼의 부족한 복합담즙산을 보충하기 위해 cholesterol을 이용하여 새로운 복합담즙산을 생성하기 때문에 결국은 체내의 혈중 cholesterol 수준을 감소시키는 것으로 생각된다. 또한 담즙으로 분비되는 복합담즙산은 소장내에서 cholesterol의 용해 흡수에 도움을 주지만 유리 담즙산은 cholesterol 용해성이 낮기 때문에, 장내 cholesterol 흡수에 영향을 미치는 것으로 생각된다.

  • PDF

Assessment of Bile Salt Effects on S-Layer Production, slp Gene Expression and, Some Physicochemical Properties of Lactobacillus acidophilus ATCC 4356

  • Khaleghi, M.;Kermanshahi, R. Kasra;Yaghoobi, M.M.;Zarkesh-Esfahani, S.H.;Baghizadeh, A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권4호
    • /
    • pp.749-756
    • /
    • 2010
  • In many conditions, bacterial surface properties are changed as a result of variation in the growth medium and conditions. This study examined the influence of bile salt concentrations (0-0.1%) on colony morphotype, hydrophobicity, $H_2O_2$ concentration, S-layer protein production, and slpA gene expression in Lactobacillus acidophilus ATCC 4356. It was observed that two types of colonies (R and S) were in the control group and the stress condition. When the bile level increased in the medium, the amount of S type was more than the R type. A stepwise increment in the bile concentration resulted in a stepwise decline in the maximum growth rate. The results showed that hydrophobicity was increased in 0.01%-0.02% bile, but it was decreased in 0.1% bile. Treatment by bile (0.01%-0.1%) profoundly decreased $H_2O_2$ formation. S-Layer protein and slpA gene expression were also altered by the stress condition. S-Protein expression was increased in the stress condition. The slpA gene expression increased in 0.01%-0.05% bile and it decreased in 0.1% bile. However, we found that different bile salt concentrations influenced the morphology and some surface properties of L. acidophilus ATCC 4356. These changes were very different in the 0.1% bile. It appears that the bacteria respond abruptly to 0.1% bile.

이중 담관 기형과 동반된 담관 관내 유두종 : 증례 보고 (Extrahepatic Bile Duct Duplication with Intraductal Papillary Neoplasm: A Case Report)

  • 전가영;최주완
    • 대한영상의학회지
    • /
    • 제82권4호
    • /
    • pp.964-970
    • /
    • 2021
  • 이중 담관 기형은 매우 드문 선천 기형의 한 종류이다. 이중 담관 기형과 동반한 담관암의 증례가 보고된 적이 있으나 담관암의 전 침습적 병변인 관내 유두종이 이중 담관 기형과 함께 동반한 증례는 보고된 적이 없다. 우리는 64세 여성에게서 발견된 이중 담관 기형과 동반된 관내 유두종을 보고하고자 한다. 환자는 간 우엽 절제술을 시행하였으며 병리 결과에서 관내 유두종, 이중 담관 기형으로 진단되었다. 이에 대한 증례를 간단한 문헌 고찰과 함께 보고한다.

한국염소에서 실험적 총담관부분 및 완전폐쇄에 따른 임상생화학적 연구 (Clinico-biochemical Study on Experimental Partial and Complete Obstruction of the Common Bile Duct in Korean Goats)

  • 유라경;정종태;남치주
    • 한국임상수의학회지
    • /
    • 제8권1호
    • /
    • pp.71-80
    • /
    • 1991
  • Clinical signs, serum chemical values and histological findings of hepatic tissue after partial and complete obstruction of common bile duct in Korean goats were investigated. Abnormal clinical signs were not observed in partial obstruction of common bile duct, but in complete obstruction clinical signs such as jaundice, urine color change, were observed. Serum total bilirubin, total cholesterol, aspartate aminotransferase, sorbitol dehydrogenase, gamma glutamyltranspeptidase, and total protein values increased on the 1-4th day and then gradually decreased to normal level in partial obstruction. However, they tend to increase persistently by the 24th day in complete obstruction of common bileduct. Histologic features of hepatic tissue in partial obstruction were not changed as compared with normal hepatic tissue. On the other hand, in complete obstruction of common bite duct there were moderate bile duct proliferation in a portal area, rupture of bile canaliculi, phagocytosis of bile pigment by Kupffer cells, periportal fibrosis, intrahepatic bile stasis and hepatic cell necrosis.

  • PDF

Biochemical and Molecular Insights into Bile Salt Hydrolase in the Gastrointestinal Microflora - A Review -

  • Kim, Geun-Bae;Lee, Byong H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권10호
    • /
    • pp.1505-1512
    • /
    • 2005
  • Bile salt deconjugation is the most biologically significant reaction among the bacterial alterations of bile acids in the gastrointestinal tract of human and animal. The responsible enzyme, bile salt hydrolase (BSH), catalyzes the hydrolysis of glycineand/or taurine-conjugated bile salts into amino acid residues and deconjugated bile acids. Herein we review current knowledge on the distribution of BSH activity among various microorganisms with respect to their biochemical and molecular characteristics. The proposed physiological impact of BSH activity on the host animal as well as on the BSH-producing bacterial cells is discussed. BSH activity of the probiotic strains is examined on the basis of BSH hypothesis, which was proposed to explain cholesterol-lowering effects of probiotics. Finally, the potential applications of BSH research are briefly discussed.

혐기적 Broth System에서 젖산균의 담즙산염 내성 (Bile Salt-Tolerance of Lactic Acid Bacteria under Anaerobic Broth System)

  • 신용서;김성효;이갑상
    • 한국미생물·생명공학회지
    • /
    • 제23권5호
    • /
    • pp.513-518
    • /
    • 1995
  • To evaluate bile salt-tolerance of lactic acid bacteria (LAB, Lactobacillus acidophilus ATCC 4356, Lactobacillus casei IFO 3533, Streptococcus thermnophilus KCTC 2185, Lactobacillus lactis ATCC 4797, and Lactobacillus bulgaricus ATCC 11842), We investigated the survivals, acid production and $\beta $-galactosidase activity of LAB under anaerobic broth system. Cellular permeability of LAB and their cellular retention of $\beta $-galactosidase were also examined in the same system. Although the growth of LAB was slightly suppressed by 0.3% bile salt, they showed normal growth curve. Streptococcus thermophilus KCTC 2185 was significantly more resistant to bile salt than the others. The $\beta $-galactosidase activity from Streptococcus thermophilus KCTC 2185 and Lactobacillus bulgaricus ATCC 11842 and their cellular retention of $\beta $-galactosidase decreased by 0.3% bile salt. The cellular permeability of LAB in the presence of bile salt increased significantly.

  • PDF