• Title/Summary/Keyword: bijection

Search Result 33, Processing Time 0.016 seconds

Four proofs of the Cayley formula (케일리 공식의 네 가지 증명)

  • Seo, Seung-Hyun;Kwon, Seok-Il;Hong, Jin-Kon
    • Journal for History of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.127-142
    • /
    • 2008
  • In this paper, we introduce four different approaches of proving Cayley formula, which counts the number of trees(acyclic connected simple graphs). The first proof was done by Cayley using recursive formulas. On the other hands the core idea of the other three proofs is the bijective method-find an one to one correspondence between the set of trees and a suitable family of combinatorial objects. Each of the three bijection gives its own generalization of Cayley formula. In particular, the last proof, done by Seo and Shin, has an application to computer science(theoretical computation), which is a typical example that pure mathematics supply powerful tools to other research fields.

  • PDF

On the Numbers of Palindromes

  • Bang, Sejeong;Feng, Yan-Quan;Lee, Jaeun
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.349-355
    • /
    • 2016
  • For any integer $n{\geq}2$, each palindrome of n induces a circulant graph of order n. It is known that for each integer $n{\geq}2$, there is a one-to-one correspondence between the set of (resp. aperiodic) palindromes of n and the set of (resp. connected) circulant graphs of order n (cf. [2]). This bijection gives a one-to-one correspondence of the palindromes ${\sigma}$ with $gcd({\sigma})=1$ to the connected circulant graphs. It was also shown that the number of palindromes ${\sigma}$ of n with $gcd({\sigma})=1$ is the same number of aperiodic palindromes of n. Let $a_n$ (resp. $b_n$) be the number of aperiodic palindromes ${\sigma}$ of n with $gcd({\sigma})=1$ (resp. $gcd({\sigma}){\neq}1$). Let $c_n$ (resp. $d_n$) be the number of periodic palindromes ${\sigma}$ of n with $gcd({\sigma})=1$ (resp. $gcd({\sigma}){\neq}1$). In this paper, we calculate the numbers $a_n$, $b_n$, $c_n$, $d_n$ in two ways. In Theorem 2.3, we $n_d$ recurrence relations for $a_n$, $b_n$, $c_n$, $d_n$ in terms of $a_d$ for $d{\mid}n$ and $d{\neq}n$. Afterwards, we nd formulae for $a_n$, $b_n$, $c_n$, $d_n$ explicitly in Theorem 2.5.

On the Tensor Product of m-Partition Algebras

  • Kennedy, A. Joseph;Jaish, P.
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.679-710
    • /
    • 2021
  • We study the tensor product algebra Pk(x1) ⊗ Pk(x2) ⊗ ⋯ ⊗ Pk(xm), where Pk(x) is the partition algebra defined by Jones and Martin. We discuss the centralizer of this algebra and corresponding Schur-Weyl dualities and also index the inequivalent irreducible representations of the algebra Pk(x1) ⊗ Pk(x2) ⊗ ⋯ ⊗ Pk(xm) and compute their dimensions in the semisimple case. In addition, we describe the Bratteli diagrams and branching rules. Along with that, we have also constructed the RS correspondence for the tensor product of m-partition algebras which gives the bijection between the set of tensor product of m-partition diagram of Pk(n1) ⊗ Pk(n2) ⊗ ⋯ ⊗ Pk(nm) and the pairs of m-vacillating tableaux of shape [λ] ∈ Γkm, Γkm = {[λ] = (λ1, λ2, …, λm)|λi ∈ Γk, i ∈ {1, 2, …, m}} where Γk = {λi ⊢ t|0 ≤ t ≤ k}. Also, we provide proof of the identity $(n_1n_2{\cdots}n_m)^k={\sum}_{[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$ f[λ]mk[λ] where mk[λ] is the multiplicity of the irreducible representation of $S{_{n_1}}{\times}S{_{n_2}}{\times}....{\times}S{_{n_m}}$ module indexed by ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$, where f[λ] is the degree of the corresponding representation indexed by ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}$ and ${[{\lambda}]{\in}{\Lambda}^k_{{n_1},{n_2},{\ldots},{n_m}}}=\{[{\lambda}]=({\lambda}_1,{\lambda}_2,{\ldots},{\lambda}_m){\mid}{\lambda}_i{\in}{\Lambda}^k_{n_i},i{\in}\{1,2,{\ldots},m\}\}$ where ${\Lambda}^k_{n_i}=\{{\mu}=({\mu}_1,{\mu}_2,{\ldots},{\mu}_t){\vdash}n_i{\mid}n_i-{\mu}_1{\leq}k\}$.