This study aims to provide basic information necessary to find an efficient management plan for patients using auto insurance. The analysis was conducted on the five-year auto insurance medical expenses review data registered in the health care bigdata Hub from 2016 to 2020. As a result of the analysis, the number one composition ratio of auto insurance inpatient treatment expenses was treatment and surgery fees for Certified tertiary hospitals, hospitalization fees for general hospitals, hospitals and clinics, and treatment and surgery fees for oriental medical institutions and dental hospitals. outpatient treatment expenses was doctor's fee for medical institution, treatment and surgery fees for oriental medical institutions and dental hospitals. The ratio of medication, anesthesia, and special equipment significantly affected the cost of inpatient. And the ratio of physical therapy significantly affected the cost of outpatient.
Seoul's public bicycle system, 'Ttareungyi,' introduced in 2015, has achieved an annual ridership of 40 million in 2022. Similarly, electric scooters, a type of personal mobility device, surpassed one million riders in 2020 due to various sharing platforms. However, the major roadways for these new transportation, bicycle lanes, are notably insufficient compared to other forms of transport. Hence, this study proposes an optimal location selection method for bicycle lanes in Seoul to prevent accidents and enhance bicycle ride safety. The location selection process prioritizes road safety concerning bicycle accident risk. Using regression models, high-risk areas for bicycle accidents are identified. Cluster analysis categorizes these areas into six clusters, each suggesting suitable types of bicycle lanes based on cluster-specific characteristics. We hope that this study will contribute to the improvement of Seoul's transportation environment, including the expansion of dedicated bicycle lanes and lanes for personal mobility devices.
Kim, Ki-su;Yi, Jae-Jin;Kim, Hong-Hoi;Jang, Yo-lim;Hahm, Yu-Kun
The Journal of Bigdata
/
v.4
no.2
/
pp.207-220
/
2019
Recent developments in information and communication technology has enabled the deployment of sensor based data to provide real-time services. In Korea, The Korea Transportation Safety Authority is collecting driving information of all commercial vehicles through a fitted digital tachograph (DTG). This information gathered using DTG can be utilized in various ways in the field of transportation. Notably in autonomous driving, the real-time analysis of this information can be used to prevent or respond to dangerous driving behavior. However, there is a limit to processing a large amount of data at a level suitable for real-time services using a traditional database system. In particular, due to a such technical problem, the processing of large quantity of traffic big data for real-time commercial vehicle operation information analysis has never been attempted in Korea. In order to solve this problem, this study optimized the new database server system and confirmed that a real-time service is possible. It is expected that the constructed database system will be used to secure base data needed to establish digital twin and autonomous driving environments.
Recently, the damage with social cost of malicious comments is increasing. In addition to the news of talent committing suicide through the effects of malicious comments. The damage to malicious comments including abusive language and slang is increasing and spreading in various type and forms throughout society. In this paper, we propose a technique for detecting abusive language using a bi-directional long short-term memory neural network model. We collected comments on the web through the web crawler and processed the stopwords on unused words such as English Alphabet or special characters. For the stopwords processed comments, the bidirectional long short-term memory neural network model considering the front word and back word of sentences was used to determine and detect abusive language. In order to use the bi-directional long short-term memory neural network, the detected comments were subjected to morphological analysis and vectorization, and each word was labeled with abusive language. Experimental results showed a performance of 88.79% for a total of 9,288 comments screened and collected.
MapReduce provides high levels of system scalability and fault tolerance for large-size data processing. A MapReduce-based k-nearest-neighbor(k-NN) join algorithm seeks to produce the k nearest-neighbors of each point of a dataset from another dataset. The algorithm has been considered important in bigdata analysis. However, the existing k-NN join query-processing algorithm suffers from a high index-construction cost that makes it unsuitable for the processing of bigdata. To solve the corresponding problems, we propose a new grid-based, k-NN join query-processing algorithm. Our algorithm retrieves only the neighboring data from a query cell and sends them to each MapReduce task, making it possible to improve the overhead data transmission and computation. Our performance analysis shows that our algorithm outperforms the existing scheme by up to seven-fold in terms of the query-processing time, while also achieving high extent of query-result accuracy.
With big data analysis, companies use the customized marketing strategy based on customer's information. However, because of the concerns about privacy issue and identity theft, people start erasing their personal information or changing the privacy settings on social network site. Facebook, the most used social networking site, has the feature called 'Likes' which can be used as a tool to predict user's demographic profiles, such as sex and age range. To make accurate analysis model for the study, 'Likes' data has been processed by using Gaussian RBF and nFactors for dimensionality reduction. With random Forest and 5-fold cross-validation, the result shows that sex has 75% and age has 97.85% accuracy rate. From this study, we expect to provide an useful guideline for companies and marketers who are suffering to collect customers' data.
Since the beginning of the first online shopping mall, BEST 100 is being provided as the core of all shopping mall websites. BEST 100 is greatly important because consumers can identify popular products at a glance. However, there are only studies using sales outcome indicators, and prior studies using BEST 100 are insignificant. Therefore, this study selected 11 online shopping malls and compared their main characteristics. As a research method, exploratory data analysis technique (EDA) was used by crawling the BEST 100 components of each shopping mall website, such as product name, price, and free shipping check. As a result, the total average price of 11 shopping malls was 72,891.41 won. Sales texts were classified into 8 categories by text mining. The most common category was the fashion part, but it is significant that the setting of the category analyzed the marketing text, not the product attribute. This study has implications for understanding the current online market flow and suggesting future directions by using EDA.
Currently, Webtoon Industry is promising as high potential market from it's high growth trend. The best advantage webtoon propose is that webtoon can provide appropriate service to customers with various needs. For this feature, webtoon industry is expanding throughout the world. This situation may give a great chance for authors and webtoon service corporation to export webtoon contents. Also, this situation could be an opportunity for webtoon to become a new "Korean Wave" contents. For successful advance to market, a close analysis for customers of exporting countries. In this research, we collected the data from Naver Webtoon and analyzed the features of webtoons and webtoon subscribers according to countries. With this research, it would be possible to find out specific methods and variables which affect the preference of webtoon subscribers.
Lexical ambiguity means that a word can be interpreted as two or more meanings, such as homonym and polysemy, and there are many cases of word sense ambiguation in words expressing emotions. In terms of projecting human psychology, these words convey specific and rich contexts, resulting in lexical ambiguity. In this study, we propose an emotional classification model that disambiguate word sense using bidirectional LSTM. It is based on the assumption that if the information of the surrounding context is fully reflected, the problem of lexical ambiguity can be solved and the emotions that the sentence wants to express can be expressed as one. Bidirectional LSTM is an algorithm that is frequently used in the field of natural language processing research requiring contextual information and is also intended to be used in this study to learn context. GloVe embedding is used as the embedding layer of this research model, and the performance of this model was verified compared to the model applied with LSTM and RNN algorithms. Such a framework could contribute to various fields, including marketing, which could connect the emotions of SNS users to their desire for consumption.
Iksan is one of medium city in Jellabukdo, South Korea. It has a favorable natural environment for the specialization potential of natural industries and development projects. In addition, it has various historical and cultural resources including Mireuksajji, and KTX Honam line which has been opened for a representative feature as transport city. However, it faces week connection with neighboring cities and large scale of development in neighboring areas, especially in Jeonju and Gunsan. In this paper, we try to classify the urban image assets of Iksan as 'Iksan Station' and 'ktx' on keywords and analyze the possibility of being a center of transportation and logistics through big data analysis extracted from SNS and website. In comparison with Gwangju Songjeong, KTX Honam line station, which has been developed with similar regional characteristics, it is aimed to establish the basis of improvement and establishment of urban image of Iksan city in the future.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.