• Title/Summary/Keyword: bigdata analysis

Search Result 345, Processing Time 0.025 seconds

Creating Value for Education through Big Data Analysis Education Programs (빅데이터 분석 교육 프로그램을 통한 대학 교육 가치 창출)

  • Cho, Wooje;Yu, Mi rim
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.123-130
    • /
    • 2018
  • As the demand for analytics technologies in both industry and academia increases, the demand for analytics experts is also increasing. To meet this trend, universities have begun to develop new analytics curriculum and provide courses for training analytics experts. In this study, we surveyed curriculum of master's analytics programs of 9 Korean universities and 20 overseas universities. As a result of comparing the domestic university program with the overseas university programs, the average number of subjects per school program is more than that of the Korean university program, but it was found to be less in terms of diversity of subjects.

Development of bigdata service brokers for bigdata analysis service operation and management (빅데이터 분석 서비스 운영 관리를 위한 빅데이터 서비스 브로커 설계 및 개발)

  • Kim, Baul;Kim, Sanggyu;Kim, Subin;Koo, Wonbon
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.125-127
    • /
    • 2021
  • 본 논문에서는 기존의 산업 및 서비스 변화에 따라 발생하는 빅데이터 분석 서비스 처리를 위한 빅데이터 분석 서비스 브로커 시스템을 제안한다. 기존의 빅데이터 분석 시스템은 분석하는 시간 동안 지속적으로 자원을 점유하고 있어야 하며, 이러한 서비스를 이용하기 위해 내부에 대규모의 시스템을 구축하고 지속적으로 운영해야하는 단점이 존재한다. 본 논문에서는 빅데이터 분석에 필요한 자원을 효과적으로 사용하기 위해 클라우드 기반의 자원 관리와 연계하고 서비스 이용을 용이하게 하기 위해 단일 엔드포인트 기반의 빅데이터 분석 서비스 호출 구조를 설계하였다. 이를 통해 빅데이터 서비스 분석에 소요되는 자원 점유에 따라 동적으로 자원을 생성 관리하여 자원을 보다 효과적으로 이용할 수 있는지 테스트베드를 구축하여 서비스 이용 및 자원 사용을 효과적으로 하는지 확인하였다. 또한, 이를 통해 대규모 자원을 지속적으로 점유해야하는 빅데이터 분석 플랫폼의 자원사용에 대한 한계를 일부 해소하여 자원을 효과적으로 이용할 수 있는 것을 확인하였다.

Cost-Sensitive Learning for Cardio-Cerebrovascular Disease Risk Prediction (심혈관질환 위험 예측을 위한 비용민감 학습 모델)

  • Yu Na Lee;Kyung-Hee Lee;Wan-Sup Cho
    • The Journal of Bigdata
    • /
    • v.6 no.2
    • /
    • pp.161-168
    • /
    • 2021
  • In this study, we propose a cardiovascular disease prediction model using machine learning. First, a multidimensional analysis of various differences between the two groups is performed and the results are visualized. In particular, we propose a predictive model using cost-sensitive learning that can improve the sensitivity for cases where there is a high class imbalance between the normal and patient groups, such as diseases. In this study, a predictive model is developed using CART and XGBoost, which are representative machine learning technologies, and prediction and performance are compared for cardiovascular disease patient data. According to the study results, CART showed higher accuracy and specificity than XGBoost, and the accuracy was about 70% to 74%.

Process analysis in Supply Chain Management with Process Mining: A Case Study (프로세스 마이닝 기법을 활용한 공급망 분석: 사례 연구)

  • Lee, Yonghyeok;Yi, Hojeong;Song, Minseok;Lee, Sang-Jin;Park, Sera
    • The Journal of Bigdata
    • /
    • v.1 no.2
    • /
    • pp.65-78
    • /
    • 2016
  • In the rapid change of business environment, it is crucial that several companies with core competence cooperate together in order to deliver competitive products to the market faster. Thus a lot of companies are participating in supply chains and SCM (Supply Chain Management) become more important. To efficiently manage supply chains, the analysis of data from SCM systems is required. In this paper, we explain how to analyze SCM related data with process mining techniques. After discussing the data requirement for process mining, several process mining techniques for the data analysis are explained. To show the applicability of the techniques, we have performed a case study with a company in South Korea. The case study shows that process mining is useful tool to analyze SCM data. On specifically, an overall process, several performance measures, and social networks can be easily discovered and analyzed with the techniques.

  • PDF

Derivation of Candidate Sites for a Tidal Current-Pumped Storage Hybrid Power Plant Using GIS-based Site Selection Analysis (GIS기반 적지분석을 통한 조류-양수 융합발전시스템 설치후보지 도출 연구)

  • LEE, Cholyoung;CHOI, Hyun-Woo;PARK, Jinsoon;KIM, Jihoon;PARK, Junseok
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.184-207
    • /
    • 2020
  • This study aimed to determine candidate areas for tidal current-pumped storage hybrid power plants using GIS-based site selection analysis. The study area is the southwestern sea surrounding Jindo Island in South Korea. Factors to be considered for the site selection analysis were derived considering the design and installation characteristics of the hybrid power plant. Numerical simulation to predict tidal speed was performed using the MOHID(Modelo HIDrodin?mico) and the results were converted into spatial data. Subsequently, a GIS-based overlay analysis method proposed in this study was applied to derive the installation candidate area. A total of 10 regions were identified as candidate sites. Among them, it was determined that the power generator could be installed in relatively wide sea areas in Jindo, Seongnamdo, and Hajodo.

The Case Study for Childcare Service Demand Forecasting Using Bigdata Reference Analysis Model (빅데이터 표준분석모델을 활용한 초등돌봄 수요예측 사례연구)

  • Yun, Chung-Sik;Jeong, Seung Ryul
    • Journal of Internet Computing and Services
    • /
    • v.23 no.6
    • /
    • pp.87-96
    • /
    • 2022
  • This paper is an empirical analysis as a reference model that can predict up to the maximum number of elementary school student care needs in local governments across the country. This study analyzed and predicted the characteristics of the region based on machine learning to predict the demand for elementary care in a new apartment complex. For this purpose, a total of 292 variables were used, including data related to apartment structure, such as number of parking spaces per household, and building-to-land ratio, environmental data around apartments such as distance to elementary schools, and population data of administrative districts. The use of various variables is of great significance, and it is meaningful in complex analysis. It is also an empirical case study that increased the reliability of the model through comparison with the actual value of the basic local government.

Development of Plant Engineering Analysis Platform using Knowledge Base (지식베이스를 이용한 플랜트 엔지니어링 분석 플랫폼 개발)

  • Young-Dong Ko;Hyun-Soo Kim
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.139-152
    • /
    • 2022
  • Engineering's work area for plants is a technical area that directly affects productivity, performance, and quality throughout the lifecycle from planning, design, construction, operation and disposal. Using the different types of data that occur to make decisions is important not only in the subsequent process but also in terms of cyclical cost reduction. However, there is a lack of systems to manage and analyze these integrated data. In this paper, we developed a knowledge base-based plant engineering analysis platform that can manage and utilize data. The platform provides a knowledge base that preprocesses previously collected engineering data, and provides analysis and visualization to use it as reference data in AI models. Users can perform data analysis through the use of prior technology and accumulated knowledge through the platform and use visualization in decision-support and systematically manage construction that relied only on experience.

A Process Perspective Event-log Analysis Method for Airport BHS (Baggage Handling System) (공항 수하물 처리 시스템 이벤트 로그의 프로세스 관점 분석 방안 연구)

  • Park, Shin-nyum;Song, Minseok
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.181-188
    • /
    • 2020
  • As the size of the airport terminal grows in line with the rapid growth of aviation passengers, the advanced baggage handling system that combines various data technologies has become an essential element in order to handle the baggage carried by passengers swiftly and accurately. Therefore, this study introduces the method of analyzing the baggage handling capacity of domestic airports through the latest data analysis methodology from the process point of view to advance the operation of the airport BHS and the main points based on event log data. By presenting an accurate load prediction method, it can lead to advanced BHS operation strategies in the future, such as the preemptive arrangement of resources and optimization of flight-carrousel scheduling. The data used in the analysis utilized the APIs that can be obtained by searching for "Korea Airports Corporation" in the public data portal. As a result of applying the method to the domestic airport BHS simulation model, it was possible to confirm a high level of predictive performance.

Research on the Use of Logistics Centers in Idle site on Highway Using Social Network Analysis (사회연결망 분석을 활용한 고속도로 유휴부지의 물류센터 활용 방안에 관한 연구)

  • Gong, InTaek;Shin, KwangSup
    • The Journal of Bigdata
    • /
    • v.6 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • The rapid growth of mobile-based online shopping and the appearance of untact business initiated by COVID-19 has led to an explosive increase in demand for logistics services such as delivery services. In order to respond to the rapidly growing demand, most logistics and distribution companies are working to improve customer service levels through the establishment of a full-filament center in the city center. However, due to social factors such as high land prices and traffic congestion, it becomes more difficult to establish the logistics facilities in the city center. In this study, it has been proposed the way to choose the candidate locations for the shared distribution centers among the space nearby the tall-gate which can be idle after the smart tolling service is widely extended. In order to evaluate the candidate locations, it has been evaluated the centralities of all candidates using social network analysis (SNA). To understand the result considering the characteristics of centrality, the network structure was regenerated based on the distance and the traveling time, respectively. It is possible to refer the result of evaluation based on the cumulative relative importance to choose the best set of candidates.

An Analysis of Tourism Experience and Color Relationships Using Landmark Air Photos (랜드마크 항공 사진을 이용한 관광 경험과 색채 연관성 분석)

  • Yoon, Seungsik;Do, Jinwoo;Kang, Juyoung
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.51-57
    • /
    • 2018
  • The purpose of this study is to find a valid link between color and tourism experience. We analyzed color that extracted by Aerial photo by IRI Image Scale to find color image. As an indicator of the experience of tourism, a review of the Tripadvisor was selected and analyzed through text mining. Results using text mining results and IRI image scales were generally inconsistent. To identify problems with aerial photo, the results of the analysis using the representative photographs provided by the Tripadvisor in the same way were the same as before. This indicate that details are key of tourism than the image of the overall background. This study presents new research directions by combining color analysis studies with text mining.