• Title/Summary/Keyword: big idea

Search Result 163, Processing Time 0.025 seconds

Prediction of Greenhouse Strawberry Production Using Machine Learning Algorithm (머신러닝 알고리즘을 이용한 온실 딸기 생산량 예측)

  • Kim, Na-eun;Han, Hee-sun;Arulmozhi, Elanchezhian;Moon, Byeong-eun;Choi, Yung-Woo;Kim, Hyeon-tae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Strawberry is a stand-out cultivating fruit in Korea. The optimum production of strawberry is highly dependent on growing environment. Smart farm technology, and automatic monitoring and control system maintain a favorable environment for strawberry growth in greenhouses, as well as play an important role to improve production. Moreover, physiological parameters of strawberry plant and it is surrounding environment may allow to give an idea on production of strawberry. Therefore, this study intends to build a machine learning model to predict strawberry's yield, cultivated in greenhouse. The environmental parameter like as temperature, humidity and CO2 and physiological parameters such as length of leaves, number of flowers and fruits and chlorophyll content of 'Seolhyang' (widely growing strawberry cultivar in Korea) were collected from three strawberry greenhouses located in Sacheon of Gyeongsangnam-do during the period of 2019-2020. A predictive model, Lasso regression was designed and validated through 5-fold cross-validation. The current study found that performance of the Lasso regression model is good to predict the number of flowers and fruits, when the MAPE value are 0.511 and 0.488, respectively during the model validation. Overall, the present study demonstrates that using AI based regression model may be convenient for farms and agricultural companies to predict yield of crops with fewer input attributes.

A New Access Certification System with Temporal Key Stroke Information (키 입력 시간차이를 이용한 새로운 접속인증 시스템 소개)

  • Choi, Wonyong;Kim, Sungjin;Heo, Kangin;Moon, Gyu
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.5 no.4
    • /
    • pp.45-53
    • /
    • 2015
  • In this paper, an approach of temporal certification system that can be easily added on current character-based certification system is newly introduced. This technique enhances the security of the password certification process by exploiting temporal information for each character's stroke timing, and using them as another feature of certification information, on top of character comparison process. There are three different temporal conditions: maximum, minimum and no-option. The maximum condition along with a time number (usually 0.2 second or less) means that the next key input should be punched within the time limit, while the minimum condition means the next key stroke should be typed after the time lapse specified. With no-option condition chosen, user can punch the password without any timing constraints. Prototype was developed and tested with four number password case. In comparison with 104 cases, this new approach increases the cases more than 10 digits, enhancing the security of the certification process. One big advantage of this new approach is that user can update his/her password only with different timing constraints, still keeping the same characters, that will enhance the security system management efficiency in a very simple way. Figures and pictures along with process flow are included for the validity of the idea.

A Study on Correction of True Solar Time in Eastern and Western Countries (동서양 각국의 진태양시 보정에 관한 연구)

  • Won-Ho Choi
    • Industry Promotion Research
    • /
    • v.8 no.3
    • /
    • pp.137-152
    • /
    • 2023
  • As the world progresses towards a global society as time goes by, it is a natural reality that interpreting the fortunes of people born in foreign countries will inevitably increase in the future. If the time of birth is different, a big problem arises in the theory of MyungLiollgy. Therefore, this researcher decides whether to use the local standard time of the country of birth or convert it to the Korean time zone when a foreign-born person writes four weeks, because the position of the sun determines the time and date, so the local standard time It was concluded that it was appropriate to use it, and to support the discussion on the correction of true solar time in Eastern and Western countries, we carefully selected major countries and major cities where the time difference between the currently used national standard time and the true solar time according to the actual longitude line was expected, and the results were presented. was calculated and derived. As a result of the study, it was confirmed that the time difference between the national standard time and the true solar time is much greater than the general idea. On the other hand, through the case of actual foreign-born people, it was possible to find out the great influence of summer time on the composition of the sandbar, in addition to the influence of the exact time difference on the birth date and cutting time. Through the results of this study, it is thought that we have laid the systematic foundation of the myo-logical theory on the correction of true solar time in Eastern and Western countries for the simplicity of the four weeks of foreign-born people, and this will serve as an opportunity to reduce confusion about the method of simplifying the four weeks of foreign-born people. It is assumed that it will be possible.

Analysis of mathematics test structures and tasks in Abitur (독일 아비투어(Abitur)의 수학시험 체제 및 문항 분석)

  • Kim, Seong-kyeong;Lee, Miyoung
    • The Mathematical Education
    • /
    • v.61 no.2
    • /
    • pp.287-303
    • /
    • 2022
  • The purpose of this study is to draw implications for the improvement in the CSAT by analyzing structures and tasks in the Abitur. To this end, it analyzes the mathematics test system with a focus on the basic and advanced level examination systems, the operator, the using technology, and mathematical formulas. And the characteristics of tasks in the 2021 Abitur were analyzed. As a result of the analysis, first, Germany evaluates whether students have the competency emphasized in the curriculum at Abitur. Second, Germany, which emphasizes the proper use of technology, utilizes both tasks that use technology and those that do not in the Abitur. Third, the Abitur consists of most of the tasks using promised operators and uses various types of operators to present various types of questions to evaluate competence. Fourth, the Abitur includes not only simple structured items consisting of 2-3 subtasks but also tasks dealing in depth with a single situation centered on a big idea. Finally, mathematical justification and proof play an important role in the Abitur. Based on this, some specific measures for improving the CSAT were suggested.

VKOSPI Forecasting and Option Trading Application Using SVM (SVM을 이용한 VKOSPI 일 중 변화 예측과 실제 옵션 매매에의 적용)

  • Ra, Yun Seon;Choi, Heung Sik;Kim, Sun Woong
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.177-192
    • /
    • 2016
  • Machine learning is a field of artificial intelligence. It refers to an area of computer science related to providing machines the ability to perform their own data analysis, decision making and forecasting. For example, one of the representative machine learning models is artificial neural network, which is a statistical learning algorithm inspired by the neural network structure of biology. In addition, there are other machine learning models such as decision tree model, naive bayes model and SVM(support vector machine) model. Among the machine learning models, we use SVM model in this study because it is mainly used for classification and regression analysis that fits well to our study. The core principle of SVM is to find a reasonable hyperplane that distinguishes different group in the data space. Given information about the data in any two groups, the SVM model judges to which group the new data belongs based on the hyperplane obtained from the given data set. Thus, the more the amount of meaningful data, the better the machine learning ability. In recent years, many financial experts have focused on machine learning, seeing the possibility of combining with machine learning and the financial field where vast amounts of financial data exist. Machine learning techniques have been proved to be powerful in describing the non-stationary and chaotic stock price dynamics. A lot of researches have been successfully conducted on forecasting of stock prices using machine learning algorithms. Recently, financial companies have begun to provide Robo-Advisor service, a compound word of Robot and Advisor, which can perform various financial tasks through advanced algorithms using rapidly changing huge amount of data. Robo-Adviser's main task is to advise the investors about the investor's personal investment propensity and to provide the service to manage the portfolio automatically. In this study, we propose a method of forecasting the Korean volatility index, VKOSPI, using the SVM model, which is one of the machine learning methods, and applying it to real option trading to increase the trading performance. VKOSPI is a measure of the future volatility of the KOSPI 200 index based on KOSPI 200 index option prices. VKOSPI is similar to the VIX index, which is based on S&P 500 option price in the United States. The Korea Exchange(KRX) calculates and announce the real-time VKOSPI index. VKOSPI is the same as the usual volatility and affects the option prices. The direction of VKOSPI and option prices show positive relation regardless of the option type (call and put options with various striking prices). If the volatility increases, all of the call and put option premium increases because the probability of the option's exercise possibility increases. The investor can know the rising value of the option price with respect to the volatility rising value in real time through Vega, a Black-Scholes's measurement index of an option's sensitivity to changes in the volatility. Therefore, accurate forecasting of VKOSPI movements is one of the important factors that can generate profit in option trading. In this study, we verified through real option data that the accurate forecast of VKOSPI is able to make a big profit in real option trading. To the best of our knowledge, there have been no studies on the idea of predicting the direction of VKOSPI based on machine learning and introducing the idea of applying it to actual option trading. In this study predicted daily VKOSPI changes through SVM model and then made intraday option strangle position, which gives profit as option prices reduce, only when VKOSPI is expected to decline during daytime. We analyzed the results and tested whether it is applicable to real option trading based on SVM's prediction. The results showed the prediction accuracy of VKOSPI was 57.83% on average, and the number of position entry times was 43.2 times, which is less than half of the benchmark (100 times). A small number of trading is an indicator of trading efficiency. In addition, the experiment proved that the trading performance was significantly higher than the benchmark.

Analysis of media trends related to spent nuclear fuel treatment technology using text mining techniques (텍스트마이닝 기법을 활용한 사용후핵연료 건식처리기술 관련 언론 동향 분석)

  • Jeong, Ji-Song;Kim, Ho-Dong
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.2
    • /
    • pp.33-54
    • /
    • 2021
  • With the fourth industrial revolution and the arrival of the New Normal era due to Corona, the importance of Non-contact technologies such as artificial intelligence and big data research has been increasing. Convergent research is being conducted in earnest to keep up with these research trends, but not many studies have been conducted in the area of nuclear research using artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. This study was conducted to confirm the applicability of data science analysis techniques to the field of nuclear research. Furthermore, the study of identifying trends in nuclear spent fuel recognition is critical in terms of being able to determine directions to nuclear industry policies and respond in advance to changes in industrial policies. For those reasons, this study conducted a media trend analysis of pyroprocessing, a spent nuclear fuel treatment technology. We objectively analyze changes in media perception of spent nuclear fuel dry treatment techniques by applying text mining analysis techniques. Text data specializing in Naver's web news articles, including the keywords "Pyroprocessing" and "Sodium Cooled Reactor," were collected through Python code to identify changes in perception over time. The analysis period was set from 2007 to 2020, when the first article was published, and detailed and multi-layered analysis of text data was carried out through analysis methods such as word cloud writing based on frequency analysis, TF-IDF and degree centrality calculation. Analysis of the frequency of the keyword showed that there was a change in media perception of spent nuclear fuel dry treatment technology in the mid-2010s, which was influenced by the Gyeongju earthquake in 2016 and the implementation of the new government's energy conversion policy in 2017. Therefore, trend analysis was conducted based on the corresponding time period, and word frequency analysis, TF-IDF, degree centrality values, and semantic network graphs were derived. Studies show that before the 2010s, media perception of spent nuclear fuel dry treatment technology was diplomatic and positive. However, over time, the frequency of keywords such as "safety", "reexamination", "disposal", and "disassembly" has increased, indicating that the sustainability of spent nuclear fuel dry treatment technology is being seriously considered. It was confirmed that social awareness also changed as spent nuclear fuel dry treatment technology, which was recognized as a political and diplomatic technology, became ambiguous due to changes in domestic policy. This means that domestic policy changes such as nuclear power policy have a greater impact on media perceptions than issues of "spent nuclear fuel processing technology" itself. This seems to be because nuclear policy is a socially more discussed and public-friendly topic than spent nuclear fuel. Therefore, in order to improve social awareness of spent nuclear fuel processing technology, it would be necessary to provide sufficient information about this, and linking it to nuclear policy issues would also be a good idea. In addition, the study highlighted the importance of social science research in nuclear power. It is necessary to apply the social sciences sector widely to the nuclear engineering sector, and considering national policy changes, we could confirm that the nuclear industry would be sustainable. However, this study has limitations that it has applied big data analysis methods only to detailed research areas such as "Pyroprocessing," a spent nuclear fuel dry processing technology. Furthermore, there was no clear basis for the cause of the change in social perception, and only news articles were analyzed to determine social perception. Considering future comments, it is expected that more reliable results will be produced and efficiently used in the field of nuclear policy research if a media trend analysis study on nuclear power is conducted. Recently, the development of uncontact-related technologies such as artificial intelligence and big data research is accelerating in the wake of the recent arrival of the New Normal era caused by corona. Convergence research is being conducted in earnest in various research fields to follow these research trends, but not many studies have been conducted in the nuclear field with artificial intelligence and big data-related technologies such as natural language processing and text mining analysis. The academic significance of this study is that it was possible to confirm the applicability of data science analysis technology in the field of nuclear research. Furthermore, due to the impact of current government energy policies such as nuclear power plant reductions, re-evaluation of spent fuel treatment technology research is undertaken, and key keyword analysis in the field can contribute to future research orientation. It is important to consider the views of others outside, not just the safety technology and engineering integrity of nuclear power, and further reconsider whether it is appropriate to discuss nuclear engineering technology internally. In addition, if multidisciplinary research on nuclear power is carried out, reasonable alternatives can be prepared to maintain the nuclear industry.

An Efficient Estimation of Place Brand Image Power Based on Text Mining Technology (텍스트마이닝 기반의 효율적인 장소 브랜드 이미지 강도 측정 방법)

  • Choi, Sukjae;Jeon, Jongshik;Subrata, Biswas;Kwon, Ohbyung
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.113-129
    • /
    • 2015
  • Location branding is a very important income making activity, by giving special meanings to a specific location while producing identity and communal value which are based around the understanding of a place's location branding concept methodology. Many other areas, such as marketing, architecture, and city construction, exert an influence creating an impressive brand image. A place brand which shows great recognition to both native people of S. Korea and foreigners creates significant economic effects. There has been research on creating a strategically and detailed place brand image, and the representative research has been carried out by Anholt who surveyed two million people from 50 different countries. However, the investigation, including survey research, required a great deal of effort from the workforce and required significant expense. As a result, there is a need to make more affordable, objective and effective research methods. The purpose of this paper is to find a way to measure the intensity of the image of the brand objective and at a low cost through text mining purposes. The proposed method extracts the keyword and the factors constructing the location brand image from the related web documents. In this way, we can measure the brand image intensity of the specific location. The performance of the proposed methodology was verified through comparison with Anholt's 50 city image consistency index ranking around the world. Four methods are applied to the test. First, RNADOM method artificially ranks the cities included in the experiment. HUMAN method firstly makes a questionnaire and selects 9 volunteers who are well acquainted with brand management and at the same time cities to evaluate. Then they are requested to rank the cities and compared with the Anholt's evaluation results. TM method applies the proposed method to evaluate the cities with all evaluation criteria. TM-LEARN, which is the extended method of TM, selects significant evaluation items from the items in every criterion. Then the method evaluates the cities with all selected evaluation criteria. RMSE is used to as a metric to compare the evaluation results. Experimental results suggested by this paper's methodology are as follows: Firstly, compared to the evaluation method that targets ordinary people, this method appeared to be more accurate. Secondly, compared to the traditional survey method, the time and the cost are much less because in this research we used automated means. Thirdly, this proposed methodology is very timely because it can be evaluated from time to time. Fourthly, compared to Anholt's method which evaluated only for an already specified city, this proposed methodology is applicable to any location. Finally, this proposed methodology has a relatively high objectivity because our research was conducted based on open source data. As a result, our city image evaluation text mining approach has found validity in terms of accuracy, cost-effectiveness, timeliness, scalability, and reliability. The proposed method provides managers with clear guidelines regarding brand management in public and private sectors. As public sectors such as local officers, the proposed method could be used to formulate strategies and enhance the image of their places in an efficient manner. Rather than conducting heavy questionnaires, the local officers could monitor the current place image very shortly a priori, than may make decisions to go over the formal place image test only if the evaluation results from the proposed method are not ordinary no matter what the results indicate opportunity or threat to the place. Moreover, with co-using the morphological analysis, extracting meaningful facets of place brand from text, sentiment analysis and more with the proposed method, marketing strategy planners or civil engineering professionals may obtain deeper and more abundant insights for better place rand images. In the future, a prototype system will be implemented to show the feasibility of the idea proposed in this paper.

A Folksonomy Ranking Framework: A Semantic Graph-based Approach (폭소노미 사이트를 위한 랭킹 프레임워크 설계: 시맨틱 그래프기반 접근)

  • Park, Hyun-Jung;Rho, Sang-Kyu
    • Asia pacific journal of information systems
    • /
    • v.21 no.2
    • /
    • pp.89-116
    • /
    • 2011
  • In collaborative tagging systems such as Delicious.com and Flickr.com, users assign keywords or tags to their uploaded resources, such as bookmarks and pictures, for their future use or sharing purposes. The collection of resources and tags generated by a user is called a personomy, and the collection of all personomies constitutes the folksonomy. The most significant need of the folksonomy users Is to efficiently find useful resources or experts on specific topics. An excellent ranking algorithm would assign higher ranking to more useful resources or experts. What resources are considered useful In a folksonomic system? Does a standard superior to frequency or freshness exist? The resource recommended by more users with mere expertise should be worthy of attention. This ranking paradigm can be implemented through a graph-based ranking algorithm. Two well-known representatives of such a paradigm are Page Rank by Google and HITS(Hypertext Induced Topic Selection) by Kleinberg. Both Page Rank and HITS assign a higher evaluation score to pages linked to more higher-scored pages. HITS differs from PageRank in that it utilizes two kinds of scores: authority and hub scores. The ranking objects of these pages are limited to Web pages, whereas the ranking objects of a folksonomic system are somewhat heterogeneous(i.e., users, resources, and tags). Therefore, uniform application of the voting notion of PageRank and HITS based on the links to a folksonomy would be unreasonable, In a folksonomic system, each link corresponding to a property can have an opposite direction, depending on whether the property is an active or a passive voice. The current research stems from the Idea that a graph-based ranking algorithm could be applied to the folksonomic system using the concept of mutual Interactions between entitles, rather than the voting notion of PageRank or HITS. The concept of mutual interactions, proposed for ranking the Semantic Web resources, enables the calculation of importance scores of various resources unaffected by link directions. The weights of a property representing the mutual interaction between classes are assigned depending on the relative significance of the property to the resource importance of each class. This class-oriented approach is based on the fact that, in the Semantic Web, there are many heterogeneous classes; thus, applying a different appraisal standard for each class is more reasonable. This is similar to the evaluation method of humans, where different items are assigned specific weights, which are then summed up to determine the weighted average. We can check for missing properties more easily with this approach than with other predicate-oriented approaches. A user of a tagging system usually assigns more than one tags to the same resource, and there can be more than one tags with the same subjectivity and objectivity. In the case that many users assign similar tags to the same resource, grading the users differently depending on the assignment order becomes necessary. This idea comes from the studies in psychology wherein expertise involves the ability to select the most relevant information for achieving a goal. An expert should be someone who not only has a large collection of documents annotated with a particular tag, but also tends to add documents of high quality to his/her collections. Such documents are identified by the number, as well as the expertise, of users who have the same documents in their collections. In other words, there is a relationship of mutual reinforcement between the expertise of a user and the quality of a document. In addition, there is a need to rank entities related more closely to a certain entity. Considering the property of social media that ensures the popularity of a topic is temporary, recent data should have more weight than old data. We propose a comprehensive folksonomy ranking framework in which all these considerations are dealt with and that can be easily customized to each folksonomy site for ranking purposes. To examine the validity of our ranking algorithm and show the mechanism of adjusting property, time, and expertise weights, we first use a dataset designed for analyzing the effect of each ranking factor independently. We then show the ranking results of a real folksonomy site, with the ranking factors combined. Because the ground truth of a given dataset is not known when it comes to ranking, we inject simulated data whose ranking results can be predicted into the real dataset and compare the ranking results of our algorithm with that of a previous HITS-based algorithm. Our semantic ranking algorithm based on the concept of mutual interaction seems to be preferable to the HITS-based algorithm as a flexible folksonomy ranking framework. Some concrete points of difference are as follows. First, with the time concept applied to the property weights, our algorithm shows superior performance in lowering the scores of older data and raising the scores of newer data. Second, applying the time concept to the expertise weights, as well as to the property weights, our algorithm controls the conflicting influence of expertise weights and enhances overall consistency of time-valued ranking. The expertise weights of the previous study can act as an obstacle to the time-valued ranking because the number of followers increases as time goes on. Third, many new properties and classes can be included in our framework. The previous HITS-based algorithm, based on the voting notion, loses ground in the situation where the domain consists of more than two classes, or where other important properties, such as "sent through twitter" or "registered as a friend," are added to the domain. Forth, there is a big difference in the calculation time and memory use between the two kinds of algorithms. While the matrix multiplication of two matrices, has to be executed twice for the previous HITS-based algorithm, this is unnecessary with our algorithm. In our ranking framework, various folksonomy ranking policies can be expressed with the ranking factors combined and our approach can work, even if the folksonomy site is not implemented with Semantic Web languages. Above all, the time weight proposed in this paper will be applicable to various domains, including social media, where time value is considered important.

A Study on the Applicability of Social Security Platform to Smart City (사회보장플랫폼과 스마트시티에의 적용가능성에 관한 연구)

  • Jang, Bong-Seok
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.11
    • /
    • pp.321-335
    • /
    • 2020
  • Given that with the development of the 4th industry, interest and desire for smart cities are gradually increasing and related technologies are developed as a way to strengthen urban competitiveness by utilizing big data, information and communication technology, IoT, M2M, and AI, the purpose of this study is to find out how to achieve this goal on the premise of the idea of smart well fair city. In other words, the purpose is to devise a smart well-fair city in the care area, such as health care, medical care, and welfare, and see if it is feasible. With this recognition, the paper aimed to review the concept and scope of smart city, the discussions that have been made so far and the issues or limitations on its connection to social security and social welfare, and based on it, come up with the concept of welfare city. As a method of realizing the smart welfare city, the paper reviewed characteristics and features of a social security platform as well as the applicability of smart city, especially care services. Furthermore, the paper developed discussions on the standardization of the city in terms of political and institutional improvements, utilization of personal information and public data as well as ways of institutional improvement centering on social security information system. This paper highlights the importance of implementing the digitally based community care and smart welfare city that our society is seeking to achieve. With regard to the social security platform based on behavioral design and the 7 principles(6W1H method), the present paper has the limitation of dealing only with smart cities in the fields of healthcare, medicine, and welfare. Therefore, further studies are needed to investigate the effects of smart cities in other fields and to consider the application and utilization of technologies in various aspects and the corresponding impact on our society. It is expected that this paper will suggest the future course and vision not only for smart cities but also for the social security and welfare system and thereby make some contribution to improving the quality of people's lives through the requisite adjustments made in each relevant field.

A study on naturalism style of fashion-concentrating on the 1990s- (복식의 자연주의 양식에 관한 연구-90년대 현대 복식을 중심으로-)

  • 이경아;전혜정
    • Journal of the Korean Society of Costume
    • /
    • v.37
    • /
    • pp.253-273
    • /
    • 1998
  • The culture reflects the ideology of a particular period in time and such values change according to the needs and requests of that time which eventually becomes an important factorin forming the exterior. The clothing is part of a way that composes and expresses the inherent substance of society and culture. Also, the clothing itself manifests the artistic values and behavior of mankind as an external structure maintaining its place as a big part in culture. The purpose of this study are to elucidat the concept of naturalism, which is discussed in many facets in the modern era; I studied the concept as well as the history of naturalism in order to manifest the meaning of clothing in the context of culture and I explained the concept in terms of the modern era. On such ground, I explained the naturalism expressed through clothing and characterized the exter-nal form of clothing. Also, in order to know the stream of naturalism in the modern context, I referred to the Vogue magazine of the 90s, using Delong's ABC method. Naturalism, in the context of modern fashion is a way to express the nostalgia of nature's vi-ability and purity of ecology apart from the artificial and structural appearance that resulted form scientific enhancement and hence, the ecological crisis. Naturalism pursues the soft- ness and comfort of the natural silhouette, color and material of the human body and it can be said that naturalism emphasizes the mix-ture of three substances : human, nature and clothing. The naturalism can be characterized by the factors expressed in clothing as follows. First, the naturalism shown in the form it-self draws the beauty of the bodyline without any reduction nor exaggeration. Without any distorttion of the human bodyline it shown the curve as one moves along, using the soft material. Second, the naturalism shown in color most-ly uses the natural tone with added white color and other color low in intensity and value like the receded colors of the earth that could be compared to the beauty of ecru. Third, the naturalism shown in the material is thin, light and soft in texture. In order to bring out the most natural curve of the human body, the natural fiber becomes the main material, sometimes, using crude materials. Due to the lindustrial improvement, softness and elasticity is added to the natural fibers giving them an important role as materials. Fourth, the naturalism shown in textile depicts the real natural objects in life. According to my study, the personality of naturalism in modern clothing was shown to be most strong in material and then in the order of form, texture and textile. The material com-posed of the natural silhouette and natural fibers were used to make soft color. In form, Paul Poiret made appearance expressing the natural beauty of the human body without the corset ; it continued with the inner lining making the clothing hard but in the 90s, lining-less, extremely exposed clothes and knit wear is used to emphasize the natural beauty of the body. In color and textile, the tendency spok-en above is not as strong but in color, instead of high intensity or value, the usage of neutral colors with added white color or ecru color, ear-th tone is increasing. In textile, the usage of flowers as natural material is seen frequently. As a whole, naturalistic trend in the 90s is increasing and the modern fashion is breaking out from the artificial and architectural form and conforming to a form that can realize the natural beauty of the human body. And the natural color and textile that conforms to such ideas are being used to pursue the human oriented trend that has appeared due to the increase in usage of soft natural fiber. Nowadays, the idea of returning to nature, defying the artificiality, desiring the leisure and psychological abundance that can be explained as naturalistic way of thinking is necessitated in this modern era as long as humans coexist with nature, this tendency will continue in clothing.

  • PDF