• Title/Summary/Keyword: big data mining

Search Result 699, Processing Time 0.033 seconds

A Study on the Development of the Use Index of Closed School Facilities Using Big Data -Focused on Text-Mining Techniques- (빅데이터를 활용한 폐교시설의 지표 개발에 관한 연구 -텍스트마이닝 기법을 중심으로-)

  • Kim, Jae-Young;Lee, Jong-Kuk
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.18 no.2
    • /
    • pp.1-11
    • /
    • 2019
  • The purpose of this study is to make objective decisions in the use of closed schools through the development of utilization indicators for the efficient use of closed schools, which is expected to increase continuously. The research phase was largely carried out by drawing preliminary indicators for use in closed schools, drawing final indicators using big data, and quantifying indicators, and finally objectifying them through quantification. The institution intends to apply and verify the facility based on future indicators. This study has implications for the application of big data analysis methods that have not been attempted in planning and research for the use of closed school facilities to date.

Agriculture Big Data Analysis System Based on Korean Market Information

  • Chuluunsaikhan, Tserenpurev;Song, Jin-Hyun;Yoo, Kwan-Hee;Rah, Hyung-Chul;Nasridinov, Aziz
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.217-224
    • /
    • 2019
  • As the world's population grows, how to maintain the food supply is becoming a bigger problem. Now and in the future, big data will play a major role in decision making in the agriculture industry. The challenge is how to obtain valuable information to help us make future decisions. Big data helps us to see history clearer, to obtain hidden values, and make the right decisions for the government and farmers. To contribute to solving this challenge, we developed the Agriculture Big Data Analysis System. The system consists of agricultural big data collection, big data analysis, and big data visualization. First, we collected structured data like price, climate, yield, etc., and unstructured data, such as news, blogs, TV programs, etc. Using the data that we collected, we implement prediction algorithms like ARIMA, Decision Tree, LDA, and LSTM to show the results in data visualizations.

A Keyword-Based Big Data Analysis for Individualized Health Activity: Focusing on Methodological Approach

  • Kim, Han-Byul;Bae, Geun-Pyo;Huh, Jun-Ho
    • Annual Conference of KIPS
    • /
    • 2017.04a
    • /
    • pp.540-543
    • /
    • 2017
  • It will be possible to solve some of the major issues in our society and economy with the emerging Big Data used across 21st century global digital economy. One of the main areas where big data can be quite useful is the medical and health area. IT technology is being used extensively in this area and expected to expand its application field further. However, there is still room for improvement in the usage of Big Data as it is difficult to search unstructured data contained in Big Data and collect statistics for them. This limits wider application of Big Data. Depending on data collection and analysis method, the results from a Big Data can be varied. Some of them could be positive or negative so that it is essential that Big Data should be handled adequately and appropriately adapting to a purpose. Therefore, a Big Data has been constructed in this study to applying Crawling technique for data mining and analyzed with R. Also, the data were visualized for easier recognition and this was effective in developing an individualized health plan from different angles.

A Study on the Data Mining Preprocessing Tool For Efficient Database Marketing (효율적인 데이터베이스 마케팅을 위한 데이터마이닝 전처리도구에 관한 연구)

  • Lee, Jun-Seok
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.257-264
    • /
    • 2014
  • This paper is to construction of the data mining preprocessing tool for efficient database marketing. We compare and evaluate the often used data mining tools based on the access method to local and remote databases, and on the exchange of information resources between different computers. The evaluated preprocessing of data mining tools are Answer Tree, Climentine, Enterprise Miner, Kensington, and Weka. We propose a design principle for an efficient system for data preprocessing for data mining on the distributed networks. This system is based on Java technology including EJB(Enterprise Java Beans) and XML(eXtensible Markup Language).

A study on unstructured text mining algorithm through R programming based on data dictionary (Data Dictionary 기반의 R Programming을 통한 비정형 Text Mining Algorithm 연구)

  • Lee, Jong Hwa;Lee, Hyun-Kyu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.2
    • /
    • pp.113-124
    • /
    • 2015
  • Unlike structured data which are gathered and saved in a predefined structure, unstructured text data which are mostly written in natural language have larger applications recently due to the emergence of web 2.0. Text mining is one of the most important big data analysis techniques that extracts meaningful information in the text because it has not only increased in the amount of text data but also human being's emotion is expressed directly. In this study, we used R program, an open source software for statistical analysis, and studied algorithm implementation to conduct analyses (such as Frequency Analysis, Cluster Analysis, Word Cloud, Social Network Analysis). Especially, to focus on our research scope, we used keyword extract method based on a Data Dictionary. By applying in real cases, we could find that R is very useful as a statistical analysis software working on variety of OS and with other languages interface.

Design and Implementation of Mobile CRM Utilizing Big Data Analysis Techniques (빅데이터 분석 기법을 활용한 모바일 CRM 설계 및 구현)

  • Kim, Young-Il;Yang, Seung-Su;Lee, Sang-Soon;Park, Seok-Cheon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.289-294
    • /
    • 2014
  • In the recent enterprises and are utilizing the CRM using data mining techniques and new marketing plan. However, data mining techniques are necessary expertise, general public access is difficult, it will be subject to constraints of time and space. in this paper, in order to solve this problem, we have proposed a Mobile CRM applying the data mining method. Thus, to analyze the structure of an existing CRM system, and defines the data flow and format. Also, define the process of the system, was designed sales trend analysis algorithm and customer sales recommendation algorithm using data mining techniques. Evaluation of the proposed system, through the test scenario to ensure proper operation, it was carried out the comparison and verification with the existing system. Results of the test, the value of existing programs and data matches to verify the reliability and use queries the proposed statistical tables to reduce the analysis time of data, it was verified rapidity.

Perspectives on Fashion Technology during the Pandemic Era - A Mixed Methods Approach Using Text Mining and Content Analysis - (팬데믹 시기의 패션 테크놀로지에 관한 시각 - 텍스트 마이닝과 내용 분석을 중심으로 -)

  • Kim, Mikyung;Yim, Eunhyuk
    • The Korean Fashion and Textile Research Journal
    • /
    • v.24 no.5
    • /
    • pp.545-556
    • /
    • 2022
  • To overcome the pandemic, a new strategy for innovation is in demand throughout the value chains of the fashion industry that emphasize the importance of fashion technology. Accordingly, as various viewpoints and fields of debate are unfolding to consider the direction of change led by fashion technology, it is necessary to make an active value judgment precedent by understanding the differences between various opinions. This study aims to derive keywords from fashion technology used during the pandemic, to infer the characteristics of each type of perspective and to understand their characteristics. For the research, this study combines text mining analysis and content analysis. Text mining analysis is used to find statistical patterns by collecting keywords from big data from online media, and content analysis is used to interpret the data qualitatively. After analyzing the results of this study, the following observations are made. First, the perspective of positive acceptance seeks to maximize the perception and sensory action of fashion through technology; this amplifies experience, an opportunity for innovation and efficiency. Second, critical vigilance highlights the side effects of radical changes in fashion technology, characterized by concerns about capital-centered polarization, threats to human rights, and infringement of creative thinking. Lastly, the perspective of gradual adoption is the gradual convergence of technologies, characterized by the pursuit of an appropriate balance.

Critical Assessment on Performance Management Systems for Health and Fitness Club using Balanced Score Card

  • Samina Saleem;Hussain Saleem;Abida Siddiqui;Umer Sheikh;Muhammad Asim;Jamshed Butt;Ali Muhammad Aslam
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.7
    • /
    • pp.177-185
    • /
    • 2024
  • Web science, a general discipline of learning is presently at high demand of expertise with ideas to develop software-based WebApps and MobileApps to facilitate user or customer demand e.g. shopping etc. electronically with the access at their smartphones benefitting the business enterprise as well. A worldwide-computerized reservation network is used as a single point of access for reserving airline seats, hotel rooms, rental cars, and other travel related items directly or via web-based travel agents or via online reservation sites with the advent of social-web, e-commerce, e-business, from anywhere-on-earth (AoE). This results in the accumulation of large and diverse distributed databases known as big data. This paper describes a novel intelligent web-based electronic booking framework for e-business with distributed computing and data mining support with the detail of e-business system flow for e-Booking application architecture design using the approaches for distributed computing and data mining tools support. Further, the importance of business intelligence and data analytics with issues and challenges are also discussed.

Analysis of Smart Tourism Issues Using Social Big Data Analysis

  • Se-won Jeon;Gi-Hwan Ryu
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.300-305
    • /
    • 2024
  • Smart tourism enhances communication between tourists and residents, improves quality of life, increases the utilization of local tourism resources, and helps manage cities efficiently. This paper analyzes recent issues and trends in smart tourism, derives key factors for activating smart tourism based on the analyzed data, and conducts research on promoting smart tourism. Using smart tourism as a keyword, data was collected through Textom. The collection scope included a total of 33,588 pieces of data related to smart tourism over the past year, from May 1, 2023, to May 1, 2024. The data was analyzed using text mining and social network analysis techniques. Through this analysis, the paper suggests directions for the development of smart tourism, enabling the activation of local tourism and effective urban management.

Data Mining Approach to Predicting Serial Publication Periods and Mobile Gamification Likelihood for Webtoon Contents

  • Jang, Hyun Seok;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.4
    • /
    • pp.17-24
    • /
    • 2018
  • This paper proposes data mining models relevant to the serial publication periods and mobile gamification likelihood of webtoon contents which were either serialized or completed in platform. The size of the cartoon industry including webtoon takes merely 1% of the total entertainment contents industry in Korea. However, the significance of webtoon business is rapidly growing because its intellectual property can be easily used as an effective OSMU (One Source Multi-Use) vehicle for multiple types of contents such as movie, drama, game, and character-related merchandising. We suggested a set of data mining classifiers that are deemed suitable to provide prediction models for serial publication periods and mobile gamification likelihood for the sake of webtoon contents. As a result, the balanced accuracies are respectively recorded as 85.0% and 59.0%, from the two models.