• Title/Summary/Keyword: big data analysis technology

Search Result 1,132, Processing Time 0.032 seconds

Estimation of Material Requirement of Piping Materials in an Offshore Structure using Big Data Analysis (빅데이터 분석을 이용한 해양 구조물 배관 자재의 소요량 예측)

  • Oh, Min-Jae;Roh, Myung-Il;Park, Sung-Woo;Kim, Seong-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.3
    • /
    • pp.243-251
    • /
    • 2018
  • In the shipyard, a lot of data is generated, stored, and managed during design, construction, and operation phases to build ships and offshore structures. However, it is difficult to handle such big data efficiently using existing data-handling technologies. As the big data technology is developed, the ship and offshore industries start to focus on the existing big data to find valuable information from it. In this paper, the material requirement estimation method of offshore structure piping materials using big data analysis is proposed. A big data platform for the data analysis in the shipyard is introduced and it is applied to the analysis of material requirement estimation to solve the problems in piping design by a designer. The regression model is developed from the big data of piping materials and verified using the existing data. This analysis can help a piping designer to estimate the exact amount of material requirement and schedule the purchase time.

Optimizing Employment and Learning System Using Big Data and Knowledge Management Based on Deduction Graph

  • Vishkaei, Behzad Maleki;Mahdavi, Iraj;Mahdavi-Amiri, Nezam;Askari, Masoud
    • Journal of Information Technology Applications and Management
    • /
    • v.23 no.3
    • /
    • pp.13-23
    • /
    • 2016
  • In recent years, big data has usefully been deployed by organizations with the aim of getting a better prediction for the future. Moreover, knowledge management systems are being used by organizations to identify and create knowledge. Here, the output from analysis of big data and a knowledge management system are used to develop a new model with the goal of minimizing the cost of implementing new recognized processes including staff training, transferring and employment costs. Strategies are proposed from big data analysis and new processes are defined accordingly. The company requires various skills to execute the proposed processes. Organization's current experts and their skills are known through a pre-established knowledge management system. After a gap analysis, managers can make decisions about the expert arrangement, training programs and employment to bridge the gap and accomplish their goals. Finally, deduction graph is used to analyze the model.

An Insight Study on Keyword of IoT Utilizing Big Data Analysis (빅데이터 분석을 활용한 사물인터넷 키워드에 관한 조망)

  • Nam, Soo-Tai;Kim, Do-Goan;Jin, Chan-Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.146-147
    • /
    • 2017
  • Big data analysis is a technique for effectively analyzing unstructured data such as the Internet, social network services, web documents generated in the mobile environment, e-mail, and social data, as well as well formed structured data in a database. The most big data analysis techniques are data mining, machine learning, natural language processing, and pattern recognition, which were used in existing statistics and computer science. Global research institutes have identified analysis of big data as the most noteworthy new technology since 2011. Therefore, companies in most industries are making efforts to create new value through the application of big data. In this study, we analyzed using the Social Matrics which a big data analysis tool of Daum communications. We analyzed public perceptions of "Internet of things" keyword, one month as of october 8, 2017. The results of the big data analysis are as follows. First, the 1st related search keyword of the keyword of the "Internet of things" has been found to be technology (995). This study suggests theoretical implications based on the results.

  • PDF

Application Analysis of Smart Tourism Management Model under the Background of Big Data and IOT

  • Gangmin Weng;Jingyu Zhang
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.347-354
    • /
    • 2023
  • The rapid development of information technology has accelerated the application of big data and the Internet of Things in various industries. Big data has a great potential in the development of smart tourism. With the help of innovation in emerging technologies such as big data and Internet of Things, smart tourism has a better possibility to surpass traditional tourism. Therefore, this article provides a theoretical support to this process. It has explored the innovative management model of big data and IoT in smart tourism and evaluate their effects on promoting tourism. It offers a reference for the integration and innovation of the tourism theory system. Before big data technology, the development of Internet boosted online tourism. However, tourism marketing is still inefficient due to a lack of understanding about tourists. After many practical explorations of big data technology, tourism websites begin to adopt big data technology in their daily operations. With the changes in tourists' preferences and needs, further innovation and research are needed to help smart tourism keep up with the changes in the market and create more competitive products and services. Innovation serves as the driving force for enterprises to occupy the market and develop.

A study on the success factors of Big Data through an analysis of introduction effect of Big Data (빅데이터 도입 효과 분석을 통한 빅데이터 성공요인에 관한 연구)

  • Jung, Young-Ki;Suk, Myung-Gun;Kim, Chang-Jae
    • Journal of Digital Convergence
    • /
    • v.12 no.11
    • /
    • pp.241-248
    • /
    • 2014
  • It has been expanded the bandwidth of data usages due to the rapid developments of information technology and infra hardware and then it was proposed to new paradigm of Big Data era. It has a trend to increase a Big Data technology and its performance gradually, thus enterprises have realized the importance of Data and the movement to take advantage of Big Data becomes active. This study has been performed to verify the importance through select the factors in order to active adoption of Big Data technology and utilization when enterprises use Big Data. It was selected that Big Data characteristic factors are the natures of predictability, manageability, affordability, competitiveness, creativity, responsiveness and supportability on the study. It is verified and showed that manageability were influenced to introduce Big Data in order, at the result of survey and statistics for enterprise practitioners who have big data experience.

The Adoption of Big Data to Achieve Firm Performance of Global Logistic Companies in Thailand

  • KITCHAROEN, Krisana
    • Journal of Distribution Science
    • /
    • v.21 no.1
    • /
    • pp.53-63
    • /
    • 2023
  • Purpose: Big Data analytics (BDA) has been recognized to improve firm performance because it can efficiently manage and process large-scale, wide variety, and complex data structures. This study examines the determinants of Big Data analytics adoption toward marketing and financial performance of global logistic companies in Thailand. The research framework is adopted from the technology-organization-environment (TOE) model, including technological factors (relative advantages), organizational factors (technological infrastructure and absorptive capability), environmental factors (industry competition and government support), Big Data analytics adoption, marketing performance, and financial performance. Research design, data, and methodology: A quantitative method is applied by distributing the survey to 450 employees at the manager's level and above. The sampling methods include judgmental, stratified random, and convenience sampling. The data were analyzed by Confirmatory Factor Analysis (CFA) and Structural Equation Model (SEM). Results: The results showed that all factors significantly influence Big Data analytics adoption, except technological infrastructure. In addition, Big Data analytics adoption significantly influences marketing and financial performance. Conversely, marketing performance has no significant influence on financial performance. Conclusions: The findings of this study can contribute to the strategic improvement of firm performance through Big Data analytics adoption in the logistics, distribution, and supply chain industries.

Toward a Policy for the Big Data-Based Social Problem-Solving Ecosystem: the Korean Context

  • Park, Sung-Uk;Park, Moon-Soo
    • Asian Journal of Innovation and Policy
    • /
    • v.8 no.1
    • /
    • pp.58-72
    • /
    • 2019
  • The wave of the 4th Industrial Revolution was announced by Schwab Klaus at the 2016 World Economic Forum in Davos, and prospects and measures with the future society in mind have been put in place. With the launch of the Moon Jae-in administration in May 2017, Korea has shifted all of its interest to Big Data, which is one of the most important features of the 4th Industrial Revolution. In this regard, this study focuses on the role of the public sector, explores related issues, and identifies an agenda for determining the demand for ways to foster Big Data ecosystem, from an objective perspective. Furthermore, this study seeks to establish priorities for key Big Data issues from various areas based on importance and urgency using a Delphi analysis. It also specifies the agenda by which Korea should exert national and social efforts based on these priorities in order to demonstrate the role of the public sector in reinforcing the Big Data ecosystem.

Big Data Utilization and Policy Suggestions in Public Records Management (공공기록관리분야의 빅데이터 활용 방법과 시사점 제안)

  • Hong, Deokyong
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.21 no.4
    • /
    • pp.1-18
    • /
    • 2021
  • Today, record management has become more important in management as records generated from administrative work and data production have increased significantly, and the development of information and communication technology, the working environment, and the size and various functions of the government have expanded. It is explained as an example in connection with the concept of public records with the characteristics of big data and big data characteristics. Social, Technological, Economical, Environmental and Political (STEEP) analysis was conducted to examine such areas according to the big data generation environment. The appropriateness and necessity of applying big data technology in the field of public record management were identified, and the top priority applicable framework for public record management work was schematized, and business implications were presented. First, a new organization, additional research, and attempts are needed to apply big data analysis technology to public record management procedures and standards and to record management experts. Second, it is necessary to train record management specialists with "big data analysis qualifications" related to integrated thinking so that unstructured and hidden patterns can be found in a large amount of data. Third, after self-learning by combining big data technology and artificial intelligence in the field of public records, the context should be analyzed, and the social phenomena and environment of public institutions should be analyzed and predicted.

Analysis study of movement patterns using BigData analysis technology (BigData 분석 기법을 활용한 이동 패턴 분석 연구)

  • Yun, Jun-Soo;Kang, Hee-Soo;Moon, Il-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1073-1079
    • /
    • 2014
  • One of the techniques that are most in the spotlight today, it can be said that Big data. With Big Data, technologies already prevalent in our lives is GPS. Based on the GPS data and Big Data, in this paper, we try to analyze the pattern and path of movement of a particular target. Specific target collects the GPS data by classifying weather and grade and sex of college students, and day of the week in college students of one university. The collected data is analyzed such as movement path, movement time, pattern of repetitive behavior. And visualize it. The analysis method will be classified according to the purpose of data. By identifying relationships with other data results obtained. Based on the present study, the future, we will derive the results of the data more reliable. For this purpose, a wide range of information to be collected will additionally. Research will be developed add to such as Season, time, blood type, occupation data.

Advanced Big Data Analysis, Artificial Intelligence & Communication Systems

  • Jeong, Young-Sik;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • Recently, big data and artificial intelligence (AI) based on communication systems have become one of the hottest issues in the technology sector, and methods of analyzing big data using AI approaches are now considered essential. This paper presents diverse paradigms to subjects which deal with diverse research areas, such as image segmentation, fingerprint matching, human tracking techniques, malware distribution networks, methods of intrusion detection, digital image watermarking, wireless sensor networks, probabilistic neural networks, query processing of encrypted data, the semantic web, decision-making, software engineering, and so on.