• Title/Summary/Keyword: big data analysis platform

Search Result 279, Processing Time 0.029 seconds

A Case Study on Big Data Analysis Systems for Policy Proposals of Engineering Education (공학교육 정책제안을 위한 빅데이터 분석 시스템 사례 분석 연구)

  • Kim, JaeHee;Yoo, Mina
    • Journal of Engineering Education Research
    • /
    • v.22 no.5
    • /
    • pp.37-48
    • /
    • 2019
  • The government has tried to develop a platform for systematically collecting and managing engineering education data for policy proposals. However, there have been few cases of big data analysis platform for policy proposals in engineering education, and it is difficult to determine the major function of the platform, the purpose of using big data, and the method of data collection. This study aims to collect the cases of big data analysis systems for the development of a big data system for educational policy proposals, and to conduct a study to analyze cases using the analysis frame of key elements to consider in developing a big data analysis platform. In order to analyze the case of big data system for engineering education policy proposals, 24 systems collecting and managing big data were selected. The analysis framework was developed based on literature reviews and the results of the case analysis were presented. The results of this study are expected to provide from macro-level such as what functions the platform should perform in developing a big data system and how to collect data, what analysis techniques should be adopted, and how to visualize the data analysis results.

Big data platform for health monitoring systems of multiple bridges

  • Wang, Manya;Ding, Youliang;Wan, Chunfeng;Zhao, Hanwei
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.345-365
    • /
    • 2020
  • At present, many machine leaning and data mining methods are used for analyzing and predicting structural response characteristics. However, the platform that combines big data analysis methods with online and offline analysis modules has not been used in actual projects. This work is dedicated to developing a multifunctional Hadoop-Spark big data platform for bridges to monitor and evaluate the serviceability based on structural health monitoring system. It realizes rapid processing, analysis and storage of collected health monitoring data. The platform contains offline computing and online analysis modules, using Hadoop-Spark environment. Hadoop provides the overall framework and storage subsystem for big data platform, while Spark is used for online computing. Finally, the big data Hadoop-Spark platform computational performance is verified through several actual analysis tasks. Experiments show the Hadoop-Spark big data platform has good fault tolerance, scalability and online analysis performance. It can meet the daily analysis requirements of 5s/time for one bridge and 40s/time for 100 bridges.

Design and Development of Big Data Platform based on IoT-based Children's Play Pattern Analysis

  • Jung, Seon-Jin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.218-225
    • /
    • 2020
  • The purpose of this paper is to establish an IoT-based big data platform that can check the space and form analysis in various play cultures of children. Therefore, to this end, in order to understand the healthy play culture of children, we are going to build a big data platform that allows IoT and smart devices to work together to collect data. Therefore, the goal of this study is to develop a big data platform linked to IoT first in order to collect data related to observation of children's mobile movements. Using the developed big data platform, children's play culture can be checked anywhere through observation and intuitive UI design, quick information can be automatically collected and real-time feedback, data collected through repeaters can be aggregated and analyzed, and systematic database can be utilized in the form of big data.

Big Data Analysis for Public Libraries Utilizing Big Data Platform: A Case Study of Daejeon Hanbat Library (도서관 빅데이터 플랫폼을 활용한 공공도서관 빅데이터 분석 연구: 대전한밭도서관을 중심으로)

  • On, Jeongmee;Park, Sung Hee
    • Journal of the Korean Society for information Management
    • /
    • v.37 no.3
    • /
    • pp.25-50
    • /
    • 2020
  • Since big data platform services for the public library began January 1, 2016, libraries have used big data to improve their work performance. This paper aims to examine the use cases of library big data and attempts to draw improvement plan to improve the effectiveness of library big data. For this purpose, first, we examine big data used while utilizing the library big data platform, the usage pattern of big data and services/policies drawn by big data analysis. Next, the limitations and advantages of the library big data platform are examined by comparing the data analysis of the integrated library management system (ILUS) currently used in public libraries and data analysis through the library big data platform. As a result of case analysis, big data usage patterns were found program planning and execution, collection, collection, and other types, and services/policies were summarized as customizing bookshelf themes for the book curation and reading promotion program, increasing collection utilization, and building a collection based on special topics. and disclosure of loan status data. As a result of the comparative analysis, ILUS is specialized in statistical analysis of library collection unit, and the big data platform enables selective and flexible analysis according to various attributes (age, gender, region, time of loan, etc.) reducing analysis time. Finally, the limitations revealed in case analysis and comparative analysis are summarized and suggestions for improvement are presented.

Challenges and Opportunities of Big Data

  • Khalil, Md Ibrahim;Kim, R. Young Chul;Seo, ChaeYun
    • Journal of Platform Technology
    • /
    • v.8 no.2
    • /
    • pp.3-9
    • /
    • 2020
  • Big Data is a new concept in the global and local area. This field has gained tremendous momentum in the recent years and has attracted attention of several researchers. Big Data is a data analysis methodology enabled by recent advances in information and communications technology. However, big data analysis requires a huge amount of computing resources making adoption costs of big data technology. Therefore, it is not affordable for many small and medium enterprises. We survey the concepts and characteristics of Big Data along with a number of tools like HADOOP, HPCC for managing Big Data. It also presents an overview of big data like Characteristics of Big data, big data technology, big data management tools etc. We have also highlighted on some challenges and opportunities related to the fields of big data.

  • PDF

Big Data Platform Based on Hadoop and Application to Weight Estimation of FPSO Topside

  • Kim, Seong-Hoon;Roh, Myung-Il;Kim, Ki-Su;Oh, Min-Jae
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.32-40
    • /
    • 2017
  • Recently, the amount of data to be processed and the complexity thereof have been increasing due to the development of information and communication technology, and industry's interest in such big data is increasing day by day. In the shipbuilding and offshore industry also, there is growing interest in the effective utilization of data, since various and vast amounts of data are being generated in the process of design, production, and operation. In order to effectively utilize big data in the shipbuilding and offshore industry, it is necessary to store and process large amounts of data. In this study, it was considered efficient to apply Hadoop and R, which are mostly used in big data related research. Hadoop is a framework for storing and processing big data. It provides the Hadoop Distributed File System (HDFS) for storing big data, and the MapReduce function for processing. Meanwhile, R provides various data analysis techniques through the language and environment for statistical calculation and graphics. While Hadoop makes it is easy to handle big data, it is difficult to finely process data; and although R has advanced analysis capability, it is difficult to use to process large data. This study proposes a big data platform based on Hadoop for applications in the shipbuilding and offshore industry. The proposed platform includes the existing data of the shipyard, and makes it possible to manage and process the data. To check the applicability of the platform, it is applied to estimate the weights of offshore structure topsides. In this study, we store data of existing FPSOs in Hadoop-based Hortonworks Data Platform (HDP), and perform regression analysis using RHadoop. We evaluate the effectiveness of large data processing by RHadoop by comparing the results of regression analysis and the processing time, with the results of using the conventional weight estimation program.

Design and Implementation of Hadoop-based Big-data processing Platform for IoT Environment (사물인터넷 환경을 위한 하둡 기반 빅데이터 처리 플랫폼 설계 및 구현)

  • Heo, Seok-Yeol;Lee, Ho-Young;Lee, Wan-Jik
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.2
    • /
    • pp.194-202
    • /
    • 2019
  • In the information society represented by the Fourth Industrial Revolution, various types of data and information that are difficult to see are produced, processed, and processed and circulated to enhance the value of existing goods. The IoT(Internet of Things) paradigm will change the appearance of individual life, industry, disaster, safety and public service fields. In order to implement the IoT paradigm, several elements of technology are required. It is necessary that these various elements are efficiently connected to constitute one system as a whole. It is also necessary to collect, provide, transmit, store and analyze IoT data for implementation of IoT platform. We designed and implemented a big data processing IoT platform for IoT service implementation. Proposed platform system is consist of IoT sensing/control device, IoT message protocol, unstructured data server and big data analysis components. For platform testing, fixed IoT devices were implemented as solar power generation modules and mobile IoT devices as modules for table tennis stroke data measurement. The transmission part uses the HTTP and the CoAP, which are based on the Internet. The data server is composed of Hadoop and the big data is analyzed using R. Through the emprical test using fixed and mobile IoT devices we confirmed that proposed IoT platform system normally process and operate big data.

A Study on Construction of Platform Using Spectrum Big Data (전파 빅데이터 활용을 위한 플랫폼 구축방안 연구)

  • Kim, Hyoung Ju;Ra, Jong Hei;Jeon, Woong Ryul;Kim, Pankoo
    • Smart Media Journal
    • /
    • v.9 no.2
    • /
    • pp.99-109
    • /
    • 2020
  • This paper proposes a platform construction plan for the use of spectrum big data, collects and analyzes the big data in the radio wave field, establishes a linkage plan, and presents a support system scheme for linking and using the spectrum and public sector big data. It presented a plan to build a big data platform in connection with the spectrum public sector. In a situation where there is a lack of a support system for systematic analysis and utilization of big data in the field of radio waves, by establishing a platform construction plan for the use of big data by radio-related industries, the preemptive response to realize the 4th Industrial Revolution and the status and state of the domestic radio field. The company intends to contribute to enhancing the convenience of users of the big data platform in the public sector by securing the innovation growth engine of the company and contributing to the fair competition of the radio wave industry and the improvement of service quality. In addition, it intends to contribute to raising the social awareness of the value of spectrum management data utilization and establishing a collaboration system that uses spectrum big data through joint use of the platform.

A Study of Bigdata Platform for Supporting Engineering Services (엔지니어링 서비스 지원을 위한 클라우드 기반 빅데이터 플랫폼 개발 연구)

  • Seo, Dongwoo;Kim, Myungil;Park, Sangjin;Kim, Jaesung;Jeong, Seok Chan
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.119-127
    • /
    • 2019
  • This study explains how to solve engineering problems easily and efficiently by using cloud based big data platform. To do this, we propose a cloud based big data analysis platform. The application helps users easily create models for data analysis using cloud based big data analysis platform. Analytical models modeled using components are analyzed through an analysis engine. Our platform include pre-processing, analysis, and visualization algorithms required for data analysis. Finally, we show an application of effluent concentration in a sewage treatment process.

  • PDF

A Study on the Platform for Big Data Analysis of Manufacturing Process (제조 공정 빅데이터 분석을 위한 플랫폼 연구)

  • Ku, Jin-Hee
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.177-182
    • /
    • 2017
  • As major ICT technologies such as IoT, cloud computing, and Big Data are being applied to manufacturing, smart factories are beginning to be built. The key of smart factory implementation is the ability to acquire and analyze data of the factory. Therefore, the need for a big data analysis platform is increasing. The purpose of this study is to construct a platform for big data analysis of manufacturing process and propose integrated method for analysis. The proposed platform is a RHadoop-based structure that integrates analysis tool R and Hadoop to distribute a large amount of datasets. It can store and analyze big data collected in the unit process and factory in the automation system directly in HBase, and it has overcome the limitations of RDB - based analysis. Such a platform should be developed in consideration of the unit process suitability for smart factories, and it is expected to be a guide to building IoT platforms for SMEs that intend to introduce smart factories into the manufacturing process.