• 제목/요약/키워드: bifurcation analysis

검색결과 264건 처리시간 0.032초

돔형 스페이스 프레임 구조물의 하중모드에 따른 분기점 특성에 관한 연구 (A Study on the Critical Point and Bifurcation According to Load Mode of Dome-Typed Space Frame Structures)

  • 손수덕;김승덕;이승재;김종식
    • 한국공간구조학회논문집
    • /
    • 제11권1호
    • /
    • pp.121-130
    • /
    • 2011
  • 스페이스 프레임 구조물은 연속체 쉘 구조물의 원리를 이용하여 매우 넓은 공간을 효과적 으로 덮을 수 있는 구조물이지만 뜀좌굴 및 분기좌굴 등과 같은 불안정거동은 돔형 구조물에서는 더욱 복잡하게 나타난다. 또한 붕괴메커니즘의 이론적 연구와 실험적 연구결과들 사이에서도 많은 차이를 보인다. 본 논문에서는 미적 효과가 크며 단층의 대공간을 확보하기에 적합한 돔형 공간 구조물의 구조 불안정 특성을 접선강성방정식을 이용하여 비선형 증분해석을 수행하고, Rise-span(${\mu}$)비 및 하중모드($R_L$)에 따른 임계점과 분기점의 특성을 돔형 공간구조물의 예제를 통해 고찰하였다. 여기서 불안정점은 증분해석과정을 통해서 예측할 수 있었으며, 예제에서 낮은 ${\mu}$에서는 전체좌굴이, 높은 ${\mu}$의 경우는 절점좌굴이 지배적이며, 낮은 $R_L$에서 정점좌굴이, 높은 $R_L$에서는 전체좌굴이 지배적이고, 전체좌굴이 나타나는 경우, 분기좌굴하중은 완전형상의 극한점좌굴하중의 약 50%에서 70%의 분포를 보였다.

균일외압을 받는 링보강 원형단면 강재 쉘의 강도특성 (Resisting Strength of Ring-Stiffened Cylindrical Steel Shell under Uniform External Pressure)

  • 안준태;신동구
    • 한국강구조학회 논문집
    • /
    • 제30권1호
    • /
    • pp.25-35
    • /
    • 2018
  • 균일 외압을 받는 링 보강 원형단면 강재 쉘에 대하여 재료 및 기하학적 비선형 유한요소법(GMNIA)을 적용하여 외압강도를 평가하였다. 링 보강 쉘의 기하학적 초기결함의 진폭, 반경 대 두께 비, 링 보강재 간격 대 반경비 등이 외압강도에 미치는 영향을 분석하였으며, Eurocode 3과 DNV 설계기준에 의한 설계 외압 강도와 유한 요소해석으로 구한 외압강도를 비교 평가하였다. 기하학적 초기결함의 형상은 선형탄성 좌굴해석에 의한 좌굴모드를 적용하였으며 보강 쉘의 반경 대 두께 비는 250~500범위를 고려하였다.

암호통신 응용을 위한 전압제어형 카오스 신호 발생회로 (Chaotic Circuit with Voltage Controllability for Secure Communication Applications)

  • 주계초;신봉조;송한정
    • 한국산학기술학회논문지
    • /
    • 제13권9호
    • /
    • pp.4159-4164
    • /
    • 2012
  • 본 논문에서는 암호통신을 위한 전압 제어형 카오스 신호 발생회로를 설계하였다. 제안하는 회로는 3개의 MOS 소자로 이루어지는 비선형 함수 블록과 소스 팔로워를 버퍼로 하는 이산형 카오스 신호 발생회로로, 비겹침 2상 클럭으로 구동되며, 2개의 제어전압 단자를 가진다. 제안된 회로는 SPICE 모의실험을 통하여 시간특성, 주파수특성 및 분기도 등의 여러 가지 카오스 다이내믹스가 생성됨을 확인하였다.

건국대학교 충격파 풍동의 성능 해석에 관한 수치적 연구 (A Numerical Study on the Performance Analysis of Shock Tunnel)

  • 탁정수;변영환;이재우;이장연;허철준;최병철
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2000년도 춘계 학술대회논문집
    • /
    • pp.39-44
    • /
    • 2000
  • Two-dimensional Navier-Stokes codes are used to simulate the shock tunnel in Konkuk university. In order to design experiments in impulse facilities properly and to interpret data from such facilities, it is necessary to understand how the flow approaches steady state. This is done by determining the transient flow field and flow establishment time around a given model. This will be accomplished by developing appropriate CFD codes which solve the Navier-Stokes equations, and simulating the starting process and resulting unsteady viscous flow phenomena. The starting process in a shock tunnel consists of multiple shock interactions and contact discontinuities, which are difficult to solve with the classical shock capturing schemes. A recently developed high resolution scheme is adapted for resolving the unsteady phenomena of those multiple shock interactions and contact surfaces during the starting process. The bifurcation phenomenon due to the interactions of the reflected shock from the end of the shock tube with the boundary layer generated by the incident shock becomes of particular interest. By comparing with the experiment results, the accuracy of the numerical analysis is validated and it is demonstrated that the properties which can hardly be obtained through the experiment can be estimated.

  • PDF

Dynamics and instability of the Karman wake mode induced by periodic forcing

  • Mureithi, Njuki W.
    • Wind and Structures
    • /
    • 제7권4호
    • /
    • pp.265-280
    • /
    • 2004
  • This paper presents some fundamental results on the dynamics of the periodic Karman wake behind a circular cylinder. The wake is treated like a dynamical system. External forcing is then introduced and its effect investigated. The main result obtained is the following. Perturbation of the wake, by controlled cylinder oscillations in the flow direction at a frequency equal to the Karman vortex shedding frequency, leads to instability of the Karman vortex structure. The resulting wake structure oscillates at half the original Karman vortex shedding frequency. For higher frequency excitation the primary pattern involves symmetry breaking of the initially shed symmetric vortex pairs. The Karman shedding phenomenon can be modeled by a nonlinear oscillator. The symmetrical flow perturbations resulting from the periodic cylinder excitation can also be similarly represented by a nonlinear oscillator. The oscillators represent two flow modes. By considering these two nonlinear oscillators, one having inline shedding symmetry and the other having the Karman wake spatio-temporal symmetry, the possible symmetries of subsequent flow perturbations resulting from the modal interaction are determined. A theoretical analysis based on symmetry (group) theory is presented. The analysis confirms the occurrence of a period-doubling instability, which is responsible for the frequency halving phenomenon observed in the experiments. Finally it is remarked that the present findings have important implications for vortex shedding control. Perturbations in the inflow direction introduce 'control' of the Karman wake by inducing a bifurcation which forces the transfer of energy to a lower frequency which is far from the original Karman frequency.

A branch-switching procedure for analysing instability of steel structures subjected to fire

  • Morbioli, Andrea;Tondini, Nicola;Battini, Jean-Marc
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.629-641
    • /
    • 2018
  • The paper describes the development of a two-dimensional (2D) co-rotational nonlinear beam finite element that includes advanced path-following capabilities for detecting bifurcation instability in elasto-plasticity of steel elements subjected to fire without introducing imperfections. The advantage is twofold: i) no need to assume the magnitude of the imperfections and consequent reduction of the model complexity; ii) the presence of possible critical points is checked at each converged time step based on the actual load and stiffness distribution in the structure that is affected by the temperature field in the elements. In this way, the buckling modes at elevated temperature, that may be different from the ones at ambient temperature, can be properly taken into account. Moreover, an improved displacement predictor for estimating the displacement field allowed significant reduction of the computational cost. A co-rotational framework was exploited for describing the beam kinematic. In order to highlight the potential practical implications of the developed finite element, a parametric analysis was performed to investigate how the beam element compares both with the EN1993-1-2 buckling curve and with experimental tests on axially compressed steel members. Validation against experimental data and numerical outcomes obtained with commercial software is thoroughly described.

전압 제어형 카오스회로의 온도특성 해석 (Temperature Analysis of the Voltage Contolled Chaotic Circuit)

  • 박용수;주계초;송한정
    • 한국산학기술학회논문지
    • /
    • 제14권8호
    • /
    • pp.3976-3982
    • /
    • 2013
  • 본 논문에서는 전압 제어형 카오스 신호 발생회로를 설계하고, 온도변화에 따른 특성을 해석 하였다. 제안하는 CMOS 회로로 이루어지며, 카오스 특성의 전압 제어형 오실레이터의 온도 변화에 따른 특성해석을 실시하였다. 제안하는 회로는 2상 클럭의 샘플앤드회로 3개의 MOS 소자로 이루어지는 비선형 함수 블록과 소스 팔로워로 이루어지는 레벨 쉬프터로 구성된다. SPICE 모의실험을 통하여 온도변화에 따른, 비선형함수의 전달함수 변화를 통하여, 분기도 특성, 주파수 특성 등의 카오스 다이나믹스가 변화됨변화됨을 확인 하였다. 또한 $25^{\circ}C$ 의 온도 조건에서, 제어전압 1.2 V-2.3 V 범위에서, 카오스 신호가 생성됨을 확인하였다.

Load-carrying capacities and failure modes of scaffold-shoring systems, Part II: An analytical model and its closed-form solution

  • Huang, Y.L.;Kao, Y.G.;Rosowsky, D.V.
    • Structural Engineering and Mechanics
    • /
    • 제10권1호
    • /
    • pp.67-79
    • /
    • 2000
  • Critical loads and load-carrying capacities for steel scaffolds used as shoring systems were compared using computational and experimental methods in Part I of this paper. In that paper, a simple 2-D model was established for use in evaluating the structural behavior of scaffold-shoring systems. This 2-D model was derived using an incremental finite element analysis (FEA) of a typical complete scaffold-shoring system. Although the simplified model is only two-dimensional, it predicts the critical loads and failure modes of the complete system. The objective of this paper is to present a closed-form solution to the 2-D model. To simplify the analysis, a simpler model was first established to replace the 2-D model. Then, a closed-form solution for the critical loads and failure modes based on this simplified model were derived using a bifurcation (eigenvalue) approach to the elastic-buckling problem. In this closed-form equation, the critical loads are shown to be function of the number of stories, material properties, and section properties of the scaffolds. The critical loads and failure modes obtained from the analytical (closed-form) solution were compared with the results from the 2-D model. The comparisons show that the critical loads from the analytical solution (simplified model) closely match the results from the more complex model, and that the predicted failure modes are nearly identical.

Lateral-torsional buckling of prismatic and tapered thin-walled open beams: assessing the influence of pre-buckling deflections

  • Andrade, A.;Camotim, D.
    • Steel and Composite Structures
    • /
    • 제4권4호
    • /
    • pp.281-301
    • /
    • 2004
  • The paper begins by presenting a unified variational approach to the lateral-torsional buckling (LTB) analysis of doubly symmetric prismatic and tapered thin-walled beams with open cross-sections, which accounts for the influence of the pre-buckling deflections. This approach (i) extends the kinematical assumptions usually adopted for prismatic beams, (ii) consistently uses shell membrane theory in general coordinates and (iii) adopts Trefftz's criterion to perform the bifurcation analysis. The proposed formulation is then applied to investigate the influence of the pre-buckling deflections on the LTB behaviour of prismatic and web-tapered I-section simply supported beams and cantilevers. After establishing an interesting analytical result, valid for prismatic members with shear centre loading, several elastic critical moments/loads are presented, discussed and, when possible, also compared with values reported in the literature. These numerical results, which are obtained by means of the Rayleigh-Ritz method, (i) highlight the qualitative differences existing between the LTB behaviours of simply supported beams and cantilevers and (ii) illustrate how the influence of the pre-buckling deflections on LTB is affected by a number of factors, namely ($ii_1$) the minor-to-major inertia ratio, ($ii_2$) the beam length, ($ii_3$) the location of the load point of application and ($ii_4$) the bending moment diagram shape.

PIV와 수치해석을 이용한 분지관내 맥동유동의 가시화 (Flow Visualization of Pulsatile Flow in a Branching Tube using the PIV System and Numerical Analysis)

  • 노형운;서상호;유상신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.535-540
    • /
    • 2000
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCD camera for the image processing. The cross-correlation method in combination with the moving searching area algorithm was applied for the image processing of the flow visualization. The pulsatile flow fields were visualized effectively by the PIV system in conjunction with the applied algorithm. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF