• Title/Summary/Keyword: biaxial stress state

Search Result 51, Processing Time 0.029 seconds

Surface Damage Accumulation in Alumina under the Repeated Normal-Tangential Contact Forces

  • Lee, Kwon-Yong;Choi, Sung-Jong;Youn, Ja-Woong
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.48-51
    • /
    • 2000
  • Surface damage accumulation of alumina ceramics under the cyclic stress state was analyzed. The alternating stress state in repeat pass sliding contact was simulated by a synchronized biaxial (normal and tangential) repeated indentation technique. Wear debris formation mechanism through damage accumulation and fatigue grain failure in both alumina ceramic balls and flat disks was confirmed, and the contact induced surface degradation due to fatigue cracking accumulation was quantified by measuring vertical contact displacement. Variation of structural compliance (slope of load-displacement curve) of two contacting bodies was expressed as a variation of the apparent elastic property, called pseudo-elastic constant, of the contact system.

  • PDF

A 3-D Finite Element Model For R/C Structures Based On Orthotropic Hypoelastic Constitutive Law

  • Cho, Chang-Geun;Park, Moon-Ho
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.19-25
    • /
    • 2001
  • Based on the orthotropic hypoelasticity formulation, a constitutive material model of concrete taking account of triaxial stress state is presented. In this model, the ultimate strength surface of concrete in triaxial stress space is described by the Hsieh's four-parameter surface. On the other hand, the different ultimate strength surface of concrete in strain space is proposed in order to account for increasing ductility in high confinement pressure. Compressive ascending and descending behavior of concrete is considered. Concrete cracking behavior is considered as a smeared crack model, and after cracking, the tensile strain-softening behavior and the shear mechanism of cracked concrete are considered. The proposed constitutive model of concrete is compared with some results obtained from tests under the states of uniaxial, biaxial, and triaxial stresses. In triaxial compressive tests, the peak compressive stress from the predicted results agrees well with the experimental results, and ductility response under high confining pressure matches well the experimental result. The reinforcing bars embedded in concrete are considered as an isoparametric line element which could be easily incorporated into the isoparametric solid element of concrete, and the average stress - average strain relationship of the bar embedded in concrete is considered. From numerical examples for a reinforced concrete simple beam and a structural beam type member, the stress state of concrete in the vicinity of talc critical region is investigated.

  • PDF

Reliability Analysis of Statistical Failure Probability in Sin/Hip Si3N4 (통계적 파괴 확률에 의한 Sin/Hip 질화규소의 신뢰도 분석)

  • 유영혁;이준근;이재석
    • Journal of the Korean Ceramic Society
    • /
    • v.26 no.1
    • /
    • pp.116-122
    • /
    • 1989
  • MOR test and concentric ring test were performed to evaluate the failure probability of sin/hip Si3N4 under uniaxial and biaxial stress state, respectively. Their failure probabilities were analized with KARA program based on Weibull PIA model and Batdorf model with 5 criteria, and they were compared with experiments. PIA model is in best accordance with experiments in higher fracture strength regions, especially for Pf 0.3. But in lower fracture strength region, none of the models predicts the failure probabilities appropriately.

  • PDF

Limit state assessment of nodal zone capacity in strut-and-tie models

  • Tjhin, Tjen N.;Kuchma, Daniel A.
    • Computers and Concrete
    • /
    • v.4 no.4
    • /
    • pp.259-272
    • /
    • 2007
  • A method based on the lower-bound theorem of limit analysis is presented for the capacity assessment of nodal zones in strut-and-tie models. The idealized geometry of the nodal zones is formed by the intersection of effective widths of the framing struts and ties. The stress distribution is estimated by dividing the nodal zones into constant stress triangles separated by lines of stress discontinuity. The strength adequacy is verified by comparing the biaxial stress field in each triangle with the corresponding failure criteria. The approach has been implemented in a computer-based strut-and-tie tool called CAST (Computer-Aided Strut-and-Tie). An application example is also presented to illustrate the approach.

Ultimate behavior of reinforced concrete cooling tower: Evaluation and comparison of design guidelines

  • Noh, Hyuk-Chun;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.22 no.2
    • /
    • pp.223-240
    • /
    • 2006
  • Taking into account the geometrical and material nonlinearities, an ultimate behavior of reinforced concrete cooling tower shell in hyperbolic configuration is presented. The design wind pressures suggested in the guidelines of the US (ACI) and Germany (VGB), with or without the effect of internal suction, are employed in the analysis to examine the qualitative and quantitative characteristics of each design wind pressure. The geometrical nonlinearity is incorporated by the Green-Lagrange strain tensor. The nonlinear features of concrete, such as the nonlinear stress-strain relation in compression, the tensile cracking with the smeared crack model, an effect of tension stiffening, are taken into account. The biaxial stress state in concrete is represented by an improved work-hardening plasticity model. From the perspective of quality of wind pressures, the two guidelines are determined as highly correlated each other. Through the extensive analysis on the Niederaussem cooling tower in Germany, not only the ultimate load is determined but also the mechanism of failure, distribution of cracks, damage processes, stress redistributions, and mean crack width are examined.

Fracture Behavior and Stress Distribution around Slot (슬롯주위 의 應力分布 와 破壞擧動 1)

  • 송삼홍;고성위
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.127-132
    • /
    • 1984
  • In this paper, stress concentration factor and distribution of slotted or notched plate which is subjected to uniaxial tensile load are studied. The experimental measurements have shown the following; (1)The stress around slot or notch of slotted or notched plate which is subjected to uniaxial tensile load is state of biaxial stress, which is mainly varied to notch radius and depth. (2)The stress concentration factor around slot or notch is mainly influenced by the .sigma.$_{yy}$ , it is varied with notch radius and depth. (3)For the notched specimen, there is a notch depth where stress concentration factor is maximum. On the other hand, for the slotted specimen, stress concentration factor increases as the notch depth increases. An investigation of the relationship between fracture and stress concentration factor due to the slot or notch will be presented on the later paper, for reference.

Measurement of Residual Stress Distribution in the Depth Direction of Annealed Materials of Lapped Bearing Steel Using Weighted Averaging Analysis Method (가중평균 해석법을 이용한 래핑된 베어링강 어닐링재료의 깊이방향에 대한 잔류응력분포 측정)

  • Chang-Suk Han;Chan-Woo Lee
    • Korean Journal of Materials Research
    • /
    • v.33 no.5
    • /
    • pp.205-213
    • /
    • 2023
  • This paper reports the results of an experimental examination using X-rays to test annealing materials for lapped bearing steel (STB2), to confirm the validity of the weighted averaging analysis method. The distribution behavior for the α𝜓-sin2𝜓 diagram and the presence or absence of differences in the peak method, half-value breadth method, and centroid method were investigated. When lapping the annealed bearing steel (STB2) material, a residual stress state with a non-directional steep gradient appeared in the surface layer, and it was found that the weighted averaging analysis method was effective. If there is a steep stress gradient, the sin2𝜓 diagram is curved and the diffraction intensity distribution curve becomes asymmetric, resulting in a difference between the peak method, half-value breadth method, and centroid method. This phenomenon was evident when the stress gradient was more than 2~3 kg/mm2/㎛. In this case, if the position of the diffraction line is determined using the centroid method and the weighted averaging analysis method is applied, the stress value on the surface and the stress gradient under the surface can be obtained more accurately. When the stress gradient becomes a problem, since the curvature of the sin2𝜓 diagram appears clearly in the region of sin2𝜓 > 0.5, it is necessary to increase the inclination angle 𝜓 as much as possible. In the case of a lapping layer, a more accurate value can be obtained by considering 𝜎3 in the weighted averaging analysis method. In an isotropic biaxial residual stress state, the presence or absence of 𝜎3 can be determined as the presence or absence of strain for sin2𝜓≈0.4.

Non-Quadratic Anisotropic Strain Rate Potential Defined in Plane Stress State (평면 응력 조건에서 정의된 비이차 비등방 변형률 속도 포텐셜)

  • Kim, D.;Kim, J.H.;Lee, Y.S.;Barlat, Frederic;Chung, K.
    • Transactions of Materials Processing
    • /
    • v.20 no.5
    • /
    • pp.369-376
    • /
    • 2011
  • A non-quadratic anisotropic strain rate potential was introduced as a conjugate potential of the yield stress potential Yld2000-2d to describe anisotropic behavior of sheet metals, in particular, aluminum alloy sheets under plane stress state. This strain-rate potential takes into account the anisotropic yield stresses and R-values measured along the directions measured at 0, 45 and 90 degrees from the rolling direction, as well as the balanced biaxial yield stress and strain-rate ratio. The convexity of the strain-rate potential was completely proven. The strain-rate potential was applied for two anisotropic aluminum alloy sheets, AA6022-T4 and AA2090-T3. The results verified that the strain rate potential properly described the anisotropic behavior of aluminum alloy sheets and was closely conjugate of Yld2000-2d under the plane stress state.

A Study on Nonlinear Analysis of Reinforced Concrete Structures (철근(鐵筋)콘크리트 구조물(構造物)의 비선형(非線型) 해석(解析)에 관한 연구(硏究))

  • Chang, Dong Il;Kwak, Kae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.69-77
    • /
    • 1987
  • A finite element method has been developed to study the material nonlinear analysis of reinforced concrte structures. Concrete behavior under the biaxial state of stress is represented by a nonlinear constitutive relationship which incorporates tensile cracking, tensile stiffening effect between cracks and the strain-softening phenomenon beyond the maximum compressive strength. The concrete model used is based upon nonlinear elasticity by assuming concrete to be an orthotropic material and modeled as equivalent uniaxial stress-strain constitutive relationship using equivalent uniaxial strain. The streel reinforcement is assumed to be in a uniaxial stress state and is modeled as a bilinear, elasto-plastic material with strain hardening approximating the Bauschinger effect. In plane stress state, R.C. beams is modeled as a quadratic element that has two degrees of freedom in each node. And this results of finite element analysis are compared with the experimential results of midspan deflection, stresses and strains.

  • PDF