• Title/Summary/Keyword: bias estimator

Search Result 180, Processing Time 0.027 seconds

A Dual Problem of Calibration of Design Weights Based on Multi-Auxiliary Variables

  • Al-Jararha, J.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.137-146
    • /
    • 2015
  • Singh (2013) considered the dual problem to the calibration of design weights to obtain a new generalized linear regression estimator (GREG) for the finite population total. In this work, we have made an attempt to suggest a way to use the dual calibration of the design weights in case of multi-auxiliary variables; in other words, we have made an attempt to give an answer to the concern in Remark 2 of Singh (2013) work. The same idea is also used to generalize the GREG estimator proposed by Deville and S$\ddot{a}$rndal (1992). It is not an easy task to find the optimum values of the parameters appear in our approach; therefore, few suggestions are mentioned to select values for such parameters based on a random sample. Based on real data set and under simple random sampling without replacement design, our approach is compared with other approaches mentioned in this paper and for different sample sizes. Simulation results show that all estimators have negligible relative bias, and the multivariate case of Singh (2013) estimator is more efficient than other estimators.

Bias corrected non-response estimation using nonparametric function estimation of super population model (선형 응답률 모형에서 초모집단 모형의 비모수적 함수 추정을 이용한 무응답 편향 보정 추정)

  • Sim, Joo-Yong;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.6
    • /
    • pp.923-936
    • /
    • 2021
  • A large number of non-responses are occurring in the sample survey, and various methods have been developed to deal with them appropriately. In particular, the bias caused by non-ignorable non-response greatly reduces the accuracy of estimation and makes non-response processing difficult. Recently, Chung and Shin (2017, 2020) proposed an estimator that improves the accuracy of estimation using parametric super-population model and response rate model. In this study, we suggested a bias corrected non-response mean estimator using a nonparametric function generalizing the form of a parametric super-population model. We confirmed the superiority of the proposed estimator through simulation studies.

Detection and Diagnosis of Sensor Faults for Unknown Sensor Bias in PWR Steam Generator

  • Kim, Bong-Seok;Kang, Sook-In;Lee, Yoon-Joon;Kim, Kyung-Youn;Lee, In-Soo;Kim, Jung-Taek;Lee, Jung-Woon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.86.5-86
    • /
    • 2002
  • The measurement sensor may contain unknown bias in addition to the white noise in the measurement sequence. In this paper, fault detection and diagnosis scheme for the measurement sensor is developed based on the adaptive estimator. The proposed scheme consists of a parallel bank of Kalman-type filters each matched to a set of different possible biases, a mode probability evaluator, an estimate combiner at the outputs of the filters, a bias estimator, and a fault detection and diagnosis logic. Monte Carlo simulations for the PWR steam generator in the nuclear power plant are provided to illustrate the effectiveness of the proposed scheme.

  • PDF

ONNEGATIVE MINIMUM BIASED ESTIMATION IN VARIANCE COMPONENT MODELS

  • Lee, Jong-Hoo
    • East Asian mathematical journal
    • /
    • v.5 no.1
    • /
    • pp.95-110
    • /
    • 1989
  • In a general variance component model, nonnegative quadratic estimators of the components of variance are considered which are invariant with respect to mean value translaion and have minimum bias (analogously to estimation theory of mean value parameters). Here the minimum is taken over an appropriate cone of positive semidefinite matrices, after having made a reduction by invariance. Among these estimators, which always exist the one of minimum norm is characterized. This characterization is achieved by systems of necessary and sufficient condition, and by a cone restricted pseudoinverse. In models where the decomposing covariance matrices span a commutative quadratic subspace, a representation of the considered estimator is derived that requires merely to solve an ordinary convex quadratic optimization problem. As an example, we present the two way nested classification random model. An unbiased estimator is derived for the mean squared error of any unbiased or biased estimator that is expressible as a linear combination of independent sums of squares. Further, it is shown that, for the classical balanced variance component models, this estimator is the best invariant unbiased estimator, for the variance of the ANOVA estimator and for the mean squared error of the nonnegative minimum biased estimator. As an example, the balanced two way nested classification model with ramdom effects if considered.

  • PDF

Variance estimation of a double expanded estimator for two-phase sampling

  • Mingue Park
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.403-410
    • /
    • 2023
  • Two-Phase sampling, which was first introduced by Neyman (1938), has various applications in different forms. Variance estimation for two-phase sampling has been an important research topic because conventional variance estimators used in most softwares are not working. In this paper, we considered a variance estimation for two-phase sampling in which stratified two-stage cluster sampling designs are used in both phases. By defining a conditionally unbiased estimator of an approximate variance estimator, which is calculable when all elements in the first phase sample are observed, we propose an explicit form of variance estimator of the double expanded estimator for a two-phase sample. A small simulation study shows the proposed variance estimator has a negligible bias with small variance. The suggested variance estimator is also applicable to other linear estimators of the population total or mean if appropriate residuals are defined.

A Graphical Method for Evaluating the Mixture Component Effects of Ridge Regression Estimator in Mixture Experiments

  • Jang, Dae-Heung
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 1999
  • When the component proportions in mixture experiments are restricted by lower and upper bounds multicollinearity appears all too frequently. The ridge regression can be used to stabilize the coefficient estimates in the fitted model. I propose a graphical method for evaluating the mixture component effects of ridge regression estimator with respect to the prediction variance and the prediction bias.

  • PDF

THE VARIANCE ESTIMATORS FOR CALIBRATION ESTIMATOR IN UNIT NONRESPONSE

  • Son, Chang-Kyoon;Jung, Hun-Jo
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.869-877
    • /
    • 2002
  • In the presence of unit nonresponse we perform the calibration estimation procedure for the population total corresponding to the levels of auxiliary information and derive the Taylor and the Jackknife variance estimators of it. We study the nonresponse bias reduction and the variance stabilization, and then show the efficiency of the Taylor and the Jackknife variance estimators by simulation study.

Estimation of the Lorenz Curve of the Pareto Distribution

  • Kang, Suk-Bok;Cho, Young-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.6 no.1
    • /
    • pp.285-292
    • /
    • 1999
  • In this paper we propose the several estimators of the Lorenz curve in the Pareto distribution and obtain the bias and the mean squared error for each estimator. We compare the proposed estimators with the uniformly minimum variance unbiased estimator (UMVUE) and the maximum likelihood estimator (MLE) in terms of the mean squared error (MSE) through Monte Carlo methods and discuss the results.

  • PDF

Modified Local Density Estimation for the Log-Linear Density

  • Pak, Ro-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.1
    • /
    • pp.13-22
    • /
    • 2000
  • We consider local likelihood method with a smoothed version of the model density in stead of an original model density. For simplicity a model is assumed as the log-linear density then we were able to show that the proposed local density estimator is less affected by changes among observations but its bias increases little bit more than that of the currently used local density estimator. Hence if we use the existing method and the proposed method in a proper way we would derive the local density estimator fitting the data in a better way.

  • PDF