• 제목/요약/키워드: bias estimator

검색결과 180건 처리시간 0.024초

Reducing Bias of the Minimum Hellinger Distance Estimator of a Location Parameter

  • Pak, Ro-Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권1호
    • /
    • pp.213-220
    • /
    • 2006
  • Since Beran (1977) developed the minimum Hellinger distance estimation, this method has been a popular topic in the field of robust estimation. In the process of defining a distance, a kernel density estimator has been widely used as a density estimator. In this article, however, we show that a combination of a kernel density estimator and an empirical density could result a smaller bias of the minimum Hellinger distance estimator than using just a kernel density estimator for a location parameter.

  • PDF

Effect of Bias on the Pearson Chi-squared Test for Two Population Homogeneity Test

  • Heo, Sunyeong
    • 통합자연과학논문집
    • /
    • 제5권4호
    • /
    • pp.241-245
    • /
    • 2012
  • Categorical data collected based on complex sample design is not proper for the standard Pearson multinomial-based chi-squared test because the observations are not independent and identically distributed. This study investigates effects of bias of point estimator of population proportion and its variance estimator to the standard Pearson chi-squared test statistics when the sample is collected based on complex sampling scheme. This study examines the effect under two population homogeneity test. The standard Pearson test statistic can be partitioned into two parts; the first part is the weighted sum of ${\chi}^2_1$ with eigenvalues of design matrix as their weights, and the additional second part which is added due to the biases of the point estimator and its variance estimator. Our empirical analysis shows that even though the bias of point estimator is small, Pearson test statistic is very much inflated due to underestimate the variance of point estimator. In the connection of design-based variance estimator and its design matrix, the bigger the average of eigenvalues of design matrix is, the larger relative size of which the first component part to Pearson test statistic is taking.

On Estimating the Odds Ratio between Male and Female Unemployment Rate in Small Area

  • Park, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권4호
    • /
    • pp.1029-1039
    • /
    • 2006
  • There are different kinds of methods to estimate the odds ratio for unemployment statistics in small areas, namely, the composite estimator, the Woolf estimator and the Mantel-Haenszel estimator. We can compare the reliability of these estimators according to the bias and MSE. The estimation procedures considered by this study have been applied to estimate the bias and MSE of the odds ratio between the male and female unemployment rate in some small areas. The Woolf estimator or the Mantel-Haenszel estimator is more stable than the composite estimator, but all these three estimators are similar to each other from the aspect of efficiency.

  • PDF

바이어스추정을 기반으로 한 위치추정의 오차회복 (Localization Error Recovery Based on Bias Estimation)

  • 김용식;이재훈;김봉근;오바 코타로;오야 아키히사
    • 로봇학회논문지
    • /
    • 제4권2호
    • /
    • pp.112-120
    • /
    • 2009
  • In this paper, a localization error recoverymethod based on bias estimation is provided for outdoor localization of mobile robot using different-type sensors. In the previous data integration method with DGPS, it is difficult to localize mobile robot due to multi-path phenomena of DGPS. In this paper, fault data due to multi-path phenomena can be recovered by bias estimation. The proposed data integration method uses a Kalman filter based estimator taking into account a bias estimator and a free-bias estimator. A performance evaluation is shown through an outdoor experiment using mobile robot.

  • PDF

On Bias Reduction in Kernel Density Estimation

  • 김충락;박병욱;김우철
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2000년도 추계학술발표회 논문집
    • /
    • pp.65-73
    • /
    • 2000
  • Kernel estimator is very popular in nonparametric density estimation. In this paper we propose an estimator which reduces the bias to the fourth power of the bandwidth, while the variance of the estimator increases only by at most moderate constant factor. The estimator is fully nonparametric in the sense of convex combination of three kernel estimators, and has good numerical properties.

  • PDF

패널회귀모형에서 회귀계수 추정량의 설계기반 성질 (Design-based Properties of Least Square Estimators in Panel Regression Model)

  • 김규성
    • 한국조사연구학회지:조사연구
    • /
    • 제12권3호
    • /
    • pp.49-62
    • /
    • 2011
  • 본 논문에서는 패널회귀모형에서 회귀계수 추정량으로 일반최소제곱추정량과 가중최소 제곱추정량의 설계기반 성질을 고찰한다. 회귀계수의 최소제곱추정량을 선형화하여 일반최소제곱추정량의 근사편향, 근사분산, 그리고 근사평균제곱오차의 수식과, 가중최소제곱추정량의 근사분산 수식을 유도한 후, 모의실험을 통하여 두 추정량의 근사분산 및 근사평균 제곱오차의 크기를 수치적으로 비교한다. 모의실험에서는 한국복지패널 3개년 데이터를 모집단으로 간주하고, 가구소득 변수를 관심변수로 하며 가구와 가구주 관련 7개 변수를 설명변수로 하는 유한모집단 회귀계수를 고려한다. 두 추정량의 설계기반 성질을 비교하기 위하여 표본수를 50에서 1,000까지 50 간격으로 설정하여 일반최소제곱추정량의 근사편향, 근사분산 그리고 가중최소제곱추정량의 근사분산을 계산한다. 모의실험을 통하여 다음과 같은 경향을 확인하였다. 첫째, 표본의 크기가 커지면 일반최소제곱추정량의 평균제곱오차가 가중최소제곱추정량의 분산보다 커진다. 둘째, 일반최소제곱추정량의 평균제곱오차를 가중최소제곱추정량의 분산으로 나눈비(ratio)는 설명변수에 따라 크기가 다르게 나타나고, 일반최소제곱추정량의 편향이 클수록 큰 값을 보인다. 셋째, 분산만 비교하면 일반최소제곱추정량의 분산이 가중최소제곱추정량의 분산보다 대부분의 경우에 더 작게 나타난다.

  • PDF

편향 보정 비형태추정량에 관한 연구 (A bias adjusted ratio-type estimator)

  • 오정택;신기일
    • 응용통계연구
    • /
    • 제31권3호
    • /
    • pp.397-408
    • /
    • 2018
  • 표본조사에서는 정확한 모수 추정을 위한 다양한 방법이 개발되었으며 이 중에서 보조정보를 이용한 비추정량 또는 회귀추정량이 흔히 사용된다. 최근 많은 연구가 진행되고 있는 비형태추정량(ratio type estimator)은 비추정량의 단점을 보완하여 추정의 정확성을 향상시키는 것으로 알려져 있다. 그러나 비형태추정량은 편향이 있는 것으로 알려져 있어 이를 해결하기 위한 연구가 활발히 진행되고 있다. 이에 본 연구에서는 편향을 제거하기 위해 비형태추정량에 새로운 모수를 추가한 일반화 비형태추정량(generalized ratio-type estimator)을 제안하였다. 또한 사업체조사와 같이 등분산성을 만족하지 않는 자료에서 추정의 정확성 향상을 위해 모형의 오차에 포함된 분산 모수를 추정하고 제안된 추정량을 적용하는 방법을 제안하였다. 또한 모의실험을 통해 일반화 비형태추정량은 기존의 비추정량에 비해 매우 우수한 결과를 주는 것을 확인하였다.

Shrinkage Estimator of Dispersion of an Inverse Gaussian Distribution

  • Lee, In-Suk;Park, Young-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권3호
    • /
    • pp.805-809
    • /
    • 2006
  • In this paper a shrinkage estimator for the measure of dispersion of the inverse Gaussian distribution with known mean is proposed. Also we compare the relative bias and relative efficiency of the proposed estimator with respect to minimum variance unbiased estimator.

  • PDF

The Gringorten estimator revisited

  • Cook, Nicholas John;Harris, Raymond Ian
    • Wind and Structures
    • /
    • 제16권4호
    • /
    • pp.355-372
    • /
    • 2013
  • The Gringorten estimator has been extensively used in extreme value analysis of wind speed records to obtain unbiased estimates of design wind speeds. This paper reviews the derivation of the Gringorten estimator for the mean plotting position of extremes drawn from parents of the exponential type and demonstrates how it eliminates most of the bias caused by the classical Weibull estimator. It is shown that the coefficients in the Gringorten estimator are the asymptotic values for infinite sample sizes, whereas the estimator is most often used for small sample sizes. The principles used by Gringorten are used to derive a new Consistent Linear Unbiased Estimator (CLUE) for the mean plotting positions for the Fisher Tippett Type 1, Exponential and Weibull distributions and for the associated standard deviations. Analytical and Bootstrap methods are used to calibrate the bias error in each of the estimators and to show that the CLUE are accurate to better than 1%.

On Convex Combination of Local Constant Regression

  • Mun, Jung-Won;Kim, Choong-Rak
    • Communications for Statistical Applications and Methods
    • /
    • 제13권2호
    • /
    • pp.379-387
    • /
    • 2006
  • Local polynomial regression is widely used because of good properties such as such as the adaptation to various types of designs, the absence of boundary effects and minimax efficiency Choi and Hall (1998) proposed an estimator of regression function using a convex combination idea. They showed that a convex combination of three local linear estimators produces an estimator which has the same order of bias as a local cubic smoother. In this paper we suggest another estimator of regression function based on a convex combination of five local constant estimates. It turned out that this estimator has the same order of bias as a local cubic smoother.