• Title/Summary/Keyword: bias estimator

Search Result 180, Processing Time 0.017 seconds

Reducing Bias of the Minimum Hellinger Distance Estimator of a Location Parameter

  • Pak, Ro-Jin
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.1
    • /
    • pp.213-220
    • /
    • 2006
  • Since Beran (1977) developed the minimum Hellinger distance estimation, this method has been a popular topic in the field of robust estimation. In the process of defining a distance, a kernel density estimator has been widely used as a density estimator. In this article, however, we show that a combination of a kernel density estimator and an empirical density could result a smaller bias of the minimum Hellinger distance estimator than using just a kernel density estimator for a location parameter.

  • PDF

Effect of Bias on the Pearson Chi-squared Test for Two Population Homogeneity Test

  • Heo, Sunyeong
    • Journal of Integrative Natural Science
    • /
    • v.5 no.4
    • /
    • pp.241-245
    • /
    • 2012
  • Categorical data collected based on complex sample design is not proper for the standard Pearson multinomial-based chi-squared test because the observations are not independent and identically distributed. This study investigates effects of bias of point estimator of population proportion and its variance estimator to the standard Pearson chi-squared test statistics when the sample is collected based on complex sampling scheme. This study examines the effect under two population homogeneity test. The standard Pearson test statistic can be partitioned into two parts; the first part is the weighted sum of ${\chi}^2_1$ with eigenvalues of design matrix as their weights, and the additional second part which is added due to the biases of the point estimator and its variance estimator. Our empirical analysis shows that even though the bias of point estimator is small, Pearson test statistic is very much inflated due to underestimate the variance of point estimator. In the connection of design-based variance estimator and its design matrix, the bigger the average of eigenvalues of design matrix is, the larger relative size of which the first component part to Pearson test statistic is taking.

On Estimating the Odds Ratio between Male and Female Unemployment Rate in Small Area

  • Park, Jong-Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1029-1039
    • /
    • 2006
  • There are different kinds of methods to estimate the odds ratio for unemployment statistics in small areas, namely, the composite estimator, the Woolf estimator and the Mantel-Haenszel estimator. We can compare the reliability of these estimators according to the bias and MSE. The estimation procedures considered by this study have been applied to estimate the bias and MSE of the odds ratio between the male and female unemployment rate in some small areas. The Woolf estimator or the Mantel-Haenszel estimator is more stable than the composite estimator, but all these three estimators are similar to each other from the aspect of efficiency.

  • PDF

Localization Error Recovery Based on Bias Estimation (바이어스추정을 기반으로 한 위치추정의 오차회복)

  • Kim, Yong-Shik;Lee, Jae-Hoon;Kim, Bong-Keun;Ohba, Kohtaro;Ohya, Akihisa
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.2
    • /
    • pp.112-120
    • /
    • 2009
  • In this paper, a localization error recoverymethod based on bias estimation is provided for outdoor localization of mobile robot using different-type sensors. In the previous data integration method with DGPS, it is difficult to localize mobile robot due to multi-path phenomena of DGPS. In this paper, fault data due to multi-path phenomena can be recovered by bias estimation. The proposed data integration method uses a Kalman filter based estimator taking into account a bias estimator and a free-bias estimator. A performance evaluation is shown through an outdoor experiment using mobile robot.

  • PDF

On Bias Reduction in Kernel Density Estimation

  • Kim Choongrak;Park Byeong-Uk;Kim Woochul
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.65-73
    • /
    • 2000
  • Kernel estimator is very popular in nonparametric density estimation. In this paper we propose an estimator which reduces the bias to the fourth power of the bandwidth, while the variance of the estimator increases only by at most moderate constant factor. The estimator is fully nonparametric in the sense of convex combination of three kernel estimators, and has good numerical properties.

  • PDF

Design-based Properties of Least Square Estimators in Panel Regression Model (패널회귀모형에서 회귀계수 추정량의 설계기반 성질)

  • Kim, Kyu-Seong
    • Survey Research
    • /
    • v.12 no.3
    • /
    • pp.49-62
    • /
    • 2011
  • In this paper we investigate design-based properties of both the ordinary least square estimator and the weighted least square estimator for regression coefficients in panel regression model. We derive formulas of approximate bias, variance and mean square error for the ordinary least square estimator and approximate variance for the weighted least square estimator after linearization of least square estimators. Also we compare their magnitudes each other numerically through a simulation study. We consider a three years data of Korean Welfare Panel Study as a finite population and take household income as a dependent variable and choose 7 exploratory variables related household as independent variables in panel regression model. Then we calculate approximate bias, variance, mean square error for the ordinary least square estimator and approximate variance for the weighted least square estimator based on several sample sizes from 50 to 1,000 by 50. Through the simulation study we found some tendencies as follows. First, the mean square error of the ordinary least square estimator is getting larger than the variance of the weighted least square estimator as sample sizes increase. Next, the magnitude of mean square error of the ordinary least square estimator is depending on the magnitude of the bias of the estimator, which is large when the bias is large. Finally, with regard to approximate variance, variances of the ordinary least square estimator are smaller than those of the weighted least square estimator in many cases in the simulation.

  • PDF

A bias adjusted ratio-type estimator (편향 보정 비형태추정량에 관한 연구)

  • Oh, Jung-Taek;Shin, Key-Il
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.3
    • /
    • pp.397-408
    • /
    • 2018
  • Various methods for accurate parameter estimation have been developed in a sample survey and it is also common to use a ratio estimator or the regression estimator using auxiliary information. The ratio-type estimator has been used in many recent studies and is known to improve the accuracy of estimation by adjusting the ratio estimator. However, various studies are under way to solve it since the ratio-type estimator is biased. In this study, we propose a generalized ratio-type estimator with a new parameter added to the ratio-type estimator to remove the bias. We suggested a method to apply this result to the parameter estimation under the error assumption of heteroscedasticity. Through simulation, we confirmed that the suggested generalized ratio-type estimator gives good results compared to conventional ratio-type estimators.

Shrinkage Estimator of Dispersion of an Inverse Gaussian Distribution

  • Lee, In-Suk;Park, Young-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.3
    • /
    • pp.805-809
    • /
    • 2006
  • In this paper a shrinkage estimator for the measure of dispersion of the inverse Gaussian distribution with known mean is proposed. Also we compare the relative bias and relative efficiency of the proposed estimator with respect to minimum variance unbiased estimator.

  • PDF

The Gringorten estimator revisited

  • Cook, Nicholas John;Harris, Raymond Ian
    • Wind and Structures
    • /
    • v.16 no.4
    • /
    • pp.355-372
    • /
    • 2013
  • The Gringorten estimator has been extensively used in extreme value analysis of wind speed records to obtain unbiased estimates of design wind speeds. This paper reviews the derivation of the Gringorten estimator for the mean plotting position of extremes drawn from parents of the exponential type and demonstrates how it eliminates most of the bias caused by the classical Weibull estimator. It is shown that the coefficients in the Gringorten estimator are the asymptotic values for infinite sample sizes, whereas the estimator is most often used for small sample sizes. The principles used by Gringorten are used to derive a new Consistent Linear Unbiased Estimator (CLUE) for the mean plotting positions for the Fisher Tippett Type 1, Exponential and Weibull distributions and for the associated standard deviations. Analytical and Bootstrap methods are used to calibrate the bias error in each of the estimators and to show that the CLUE are accurate to better than 1%.

On Convex Combination of Local Constant Regression

  • Mun, Jung-Won;Kim, Choong-Rak
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.2
    • /
    • pp.379-387
    • /
    • 2006
  • Local polynomial regression is widely used because of good properties such as such as the adaptation to various types of designs, the absence of boundary effects and minimax efficiency Choi and Hall (1998) proposed an estimator of regression function using a convex combination idea. They showed that a convex combination of three local linear estimators produces an estimator which has the same order of bias as a local cubic smoother. In this paper we suggest another estimator of regression function based on a convex combination of five local constant estimates. It turned out that this estimator has the same order of bias as a local cubic smoother.