• Title/Summary/Keyword: bezier curve

Search Result 110, Processing Time 0.025 seconds

Shape Optimal Design by P-version of Finite Element Method (p-Version 유한요소법에 의한 형상 최적화설계)

  • Kim, Haeng Joon;Woo, Kwang Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.729-740
    • /
    • 1994
  • In the shape optimal design based on h-version of FEM, the ideal mesh for the initial geometry most probably will not be suitable for the final analysis. Thus, it is necessary to remesh the geometry of the model at each stage of optimization. However, the p-version of FEM appears to be a very attractive alternative for use in shape optimization. The main advantages are as follows; firstly, the elements are not sensitive to distortion for interpolation polynomials of order $p{\geq}3$; secondly, even singular problems can be solved more efficiently with p-version than with the h-version by proper mesh design; thirdly, the initial mesh design are identical. The 2-D p-version model for shape optimization is presented on the basis of Bezier's curve fitting, gradient projection method, and integrals of Legendre polynomials. The numerical results are performed by p-version software RASNA.

  • PDF

A Research of Obstacle Detection and Path Planning for Lane Change of Autonomous Vehicle in Urban Environment (자율주행 자동차의 실 도로 차선 변경을 위한 장애물 검출 및 경로 계획에 관한 연구)

  • Oh, Jae-Saek;Lim, Kyung-Il;Kim, Jung-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.115-120
    • /
    • 2015
  • Recently, in automotive technology area, intelligent safety systems have been actively accomplished for drivers, passengers, and pedestrians. Also, many researches are focused on development of autonomous vehicles. This paper propose the application of LiDAR sensors, which takes major role in perceiving environment, terrain classification, obstacle data clustering method, and local map building for autonomous driving. Finally, based on these results, planning for lane change path that vehicle tracking possible were created and the reliability of path generation were experimented.

A Study on Acoustic Radiation Optimization of Vibrating Panel Using Genetic Algorithm (유전자 알고리즘을 이용한 판넬구조물의 구조음향 최적화에 관한 연구)

  • Jeon, Jin-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.19-27
    • /
    • 2009
  • Globally, customer appreciation and demand for quieter products has driven noise control engineers to develop efficient and quieter products in a relatively short time. In the vehicles and ship industry, noise has become an important attribute because of the competitive market and increasing customer awareness. Noise reduction is often achieved through structural modifications by typical approaches. In the present paper, author describes a fundamental study on optimum design of curvature. Bezier curve. and rib attachment to reduce noise from simple panel using a genetic algorithm(GA). The acoustic optimization procedure employed p-FEM for structural analysis, the Rayleigh integral method for acoustic analysis and the GA for searching optimum design. In the optimization procedure. the objective function to be minimized is the average sound power radiated from an objective structure over a given frequency range $0{\sim}300$ Hz.

Design Optimization of a Centrifugal Compressor Impeller Considering the Meridional Plane (자오면 형상을 고려한 원심압축기 임펠러 최적설계)

  • Kim, Jin-Hyuk;Choi, Jae-Ho;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.3
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, shape optimization based on three-dimensional flow analysis has been performed for impeller design of centrifugal compressor. To evaluate the objective function of an isentropic efficiency, Reynolds-averaged Navier-Stokes equations are solved with SST (Shear Stress Transport) turbulence model. The governing equations are discretized by finite volume approximations. The optimization techniques based on the radial basis neural network method are used for the optimization. Latin hypercube sampling as design of experiments is used to generate thirty design points within design space. Sequential quadratic programming is used to search the optimal point based on the radial basis neural network model. Four geometrical variables concerning impeller shape are selected as design variables. The results show that the isentropic efficiency is enhanced effectively from the shape optimization by the radial basis neural network method.

Development of a New Moving Obstacle Avoidance Algorithm using a Delay-Time Compensation for a Network-based Autonomous Mobile Robot (네트워크 기반 자율 이동 로봇을 위한 시간지연 보상을 통한 새로운 동적 장애물 회피 알고리즘 개발)

  • Kim, Dong-Sun;Oh, Se-Kwon;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1916-1917
    • /
    • 2011
  • A development of a new moving obstacle avoidance algorithm using a delay-time Compensation for a network-based autonomous mobile robot is proposed in this paper. The moving obstacle avoidance algorithm is based on a Kalman filter through moving obstacle estimation and a Bezier curve for path generation. And, the network-based mobile robot, that is a unified system composed of distributed environmental sensors, mobile actuators, and controller, is compensated by a network delay compensation algorithm for degradation performance by network delay. The network delay compensation method by a sensor fusion using the Kalman filter is proposed for the localization of the robot to compensate both the delay of readings of an odometry and the delay of reading of environmental sensors. Through some simulation tests, the performance enhancement of the proposed algorithm in the viewpoint of efficient path generation and accurate goal point is shown here.

  • PDF

Design Optimization of Flow Guide by an Approximation Approach in Three-dimensional Extrusion Processes (근사 최적화 기법을 이용한 3차원 압출공정에서 플로우 가이드 형상의 최적 설계)

  • Lee S. R.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.19-22
    • /
    • 2004
  • A scheme of shape optimization by new approximation approach is applied to design of a flow guide in three-dimensional extrusion processes. The optimization scheme is presented to reduce computation time fur the optimization process and applied to an H-section extrusion problem for verifying the efficiency and the usefulness. The object of optimization is to minimize the deviation of exit velocity and control points of a Bezier curve describing the shape of the flow guide are regarded as design variables. The effectiveness of the proposed scheme is then demonstrated through the applied example.

  • PDF

Design and Implementation of Hangul Graphic Board to Speed up the Generation of High Resolution Fonts used in Electric Public System (전자 출판 시스템에 사용되는 고해상도 문자의 발생을 가속시키기 위한 한글 그래픽 보드의 설게 및 제작)

  • 황규철;경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.5
    • /
    • pp.802-807
    • /
    • 1990
  • In this thesis, we represent the study on the design and implementation of the hangul graphic board which generate bit map font data from the boundary information of korean or chines fonts. The implemented graphic board consists of a TMS34010 Graphic System Processor (GSP) and two TMS320C25 Digital Signal Processor (DSP), and there is shared memory which consists of two memory blocks with same address for which is possible parallel processing between two processors. And in using DSP, we propose an efficient algorithm for calculation of Bezier curve which require much times to calculate bit map data font from the boundary information.

  • PDF

A Numerical Study on Shape Design Optimization for an Impeller of a Centrifugal Compressor (원심압축기 임펠러의 형상 설계 최적화에 관한 수치적 연구)

  • Seo, JeongMin;Park, Jun Young;Choi, Bum Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.3
    • /
    • pp.5-12
    • /
    • 2014
  • This paper presents a design optimization for meridional profile and blade angle ${\theta}$ of a centrifugal compressor with DOE (design of experiments) and RSM (response surface method). Control points of the $3^{rd}$ order Bezier curve are used for design parameters and specific overall efficiency is used as object function. The response surface function shows good agreement with the 3D computational results. Three different optimized designs are proposed and compared with reference design at design point and off-design point. Contours of relative Mach number, static entropy, and total pressure are analyzed for improvement of performance by optimization. Off-design performance analysis is conducted by total pressure and efficiency.

A Study on the COntour Machining of Text using CNC Laser Machine (CNC레이저 가공기를 이용한 활자체 가공에 관한 연구)

  • 구영회
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.554-559
    • /
    • 1999
  • The purpose of this study is the machining of texture shapes by the contour fitting data. The hardware of the system comprises PC and scanning system, CO2 laser machine. There are four steps, (1) text image loading using scanning shapes or 2D image files, (2) generation of contour fitting data by the line and arc, cubic Bezier curve, (3) generation of NC code from the contouring fitting data, (4) machining by the DNC system. It is developed a software package, with which can conduct a micro CAM system of CNC laser machine in the PC without economical burden.

  • PDF

A Method for Generation of Contour lines and 3D Modeling using Depth Sensor (깊이 센서를 이용한 등고선 레이어 생성 및 모델링 방법)

  • Jung, Hunjo;Lee, Dongeun
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • In this study we propose a method for 3D landform reconstruction and object modeling method by generating contour lines on the map using a depth sensor which abstracts characteristics of geological layers from the depth map. Unlike the common visual camera, the depth-sensor is not affected by the intensity of illumination, and therefore a more robust contour and object can be extracted. The algorithm suggested in this paper first abstracts the characteristics of each geological layer from the depth map image and rearranges it into the proper order, then creates contour lines using the Bezier curve. Using the created contour lines, 3D images are reconstructed through rendering by mapping RGB images of the visual camera. Experimental results show that the proposed method using depth sensor can reconstruct contour map and 3D modeling in real-time. The generation of the contours with depth data is more efficient and economical in terms of the quality and accuracy.