• Title/Summary/Keyword: betavoltaic cell

Search Result 4, Processing Time 0.015 seconds

A nuclear battery based on silicon p-i-n structures with electroplating 63Ni layer

  • Krasnov, Andrey;Legotin, Sergey;Kuzmina, Ksenia;Ershova, Nadezhda;Rogozev, Boris
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.1978-1982
    • /
    • 2019
  • The paper presents the electrical performance measurements of a prototype nuclear battery and two types of betavoltaic cells. The electrical performance was assessed by measuring current-voltage properties (I-V) and determining the short-circuit current and the open-circuit voltage. With 63Ni as an irradiation source, the open-circuit voltage and the short-circuit current were determined as 1 V and 64 nA, respectively. The prototype consisted of 10 betavoltaic cells that were prepared using radioactive 63Ni. Electroplating of the radioactive 63Ni on an ohmic contact (Ti-Ni) was carried out at a current density of 20 mA/㎠. Two types of betavoltaic cells were studied: with an external 63Ni source and a 63Ni-covered source. Under irradiation of the 63Ni source with an activity of 10 mCi, the open-circuit voltage Voc of the fabricated cells reached 151 mV and 109 mV; the short-circuit current density Jsc was measured to be 72.9 nA/cm2 and 64.6 nA/㎠, respectively. The betavoltaic cells had the fill factor of 55% and 50%, respectively.

Evaluation of a betavoltaic energy converter supporting scalable modular structure

  • Kang, Taewook;Kim, Jinjoo;Park, Seongmo;Son, Kwangjae;Park, Kyunghwan;Lee, Jaejin;Kang, Sungweon;Choi, Byoung-Gun
    • ETRI Journal
    • /
    • v.41 no.2
    • /
    • pp.254-261
    • /
    • 2019
  • Distinct from conventional energy-harvesting (EH) technologies, such as the use of photovoltaic, piezoelectric, and thermoelectric effects, betavoltaic energy conversion can consistently generate uniform electric power, independent of environmental variations, and provide a constant output of high DC voltage, even under conditions of ultra-low-power EH. It can also dramatically reduce the energy loss incurred in the processes of voltage boosting and regulation. This study realized betavoltaic cells comprised of p-i-n junctions based on silicon carbide, fabricated through a customized semiconductor recipe, and a Ni foil plated with a Ni-63 radioisotope. The betavoltaic energy converter (BEC) includes an array of 16 parallel-connected betavoltaic cells. Experimental results demonstrate that the series and parallel connections of two BECs result in an open-circuit voltage $V_{oc}$ of 3.06 V with a short-circuit current $I_{sc}$ of 48.5 nA, and a $V_{oc}$ of 1.50 V with an $I_{sc}$ of 92.6 nA, respectively. The capacitor charging efficiency in terms of the current generated from the two series-connected BECs was measured to be approximately 90.7%.

Design optimization of GaN diode with p-GaN multi-well structure for high-efficiency betavoltaic cell

  • Yoon, Young Jun;Lee, Jae Sang;Kang, In Man;Lee, Jung-Hee;Kim, Dong-Seok
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1284-1288
    • /
    • 2021
  • In this work, we propose and design a GaN-based diode with a p-doped GaN (p-GaN) multi-well structure for high efficiency betavoltaic (BV) cells. The short-circuit current density (JSC) and opencircuit voltage (VOC) of the devices were investigated with variations of parameters such as the doping concentration, height, width of the p-GaN well region, well-to-well gap, and number of well regions. The JSC of the device was significantly improved by a wider depletion area, which was obtained by applying the multi-well structure. The optimized device achieved a higher output power density by 8.6% than that of the conventional diode due to the enhancement of JSC. The proposed device structure showed a high potential for a high efficiency BV cell candidate.

Synthesis of Electroplated 63Ni Source and Betavoltaic Battery (63Ni 도금선원 및 베타 전지 제조)

  • Uhm, Young Rang;Yoo, Kwon Mo;Choi, Sang Mu;Kim, Jin Joo;Son, Kwang Jae
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.167-170
    • /
    • 2015
  • Radioisotope (Nuclear) battery using $^{63}Ni$ was prepared as beta cell. The electroplated $^{63}Ni$ on Ni foil is fabricated, and beta cell and photovoltaic hybrid battery was designed to use at both day and night in space project. A Ni-plating solution is prepared by dissolving metal particles including $^{62}Ni$ and $^{63}Ni$ from neutron irradiation of ($n,{\gamma}$). Electroplating solution of a chloride bath consists on nickel ions in HCl, $H_3BO_3$, and KOH. The deposition was carried out at current density of $10mA\;cm^{-2}$. The prepared beta source was attached on a PN junction and measured I-V properties. The power output at activity of 0.07 mCi and 0.45 mCi were 0.55 pW and 2.69 nW, respectively.