Browse > Article
http://dx.doi.org/10.1016/j.net.2020.09.014

Design optimization of GaN diode with p-GaN multi-well structure for high-efficiency betavoltaic cell  

Yoon, Young Jun (Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute)
Lee, Jae Sang (Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute)
Kang, In Man (School of Electronic and Electrical Engineering, Kyungpook National University)
Lee, Jung-Hee (School of Electronic and Electrical Engineering, Kyungpook National University)
Kim, Dong-Seok (Korea Multi-purpose Accelerator Complex, Korea Atomic Energy Research Institute)
Publication Information
Nuclear Engineering and Technology / v.53, no.4, 2021 , pp. 1284-1288 More about this Journal
Abstract
In this work, we propose and design a GaN-based diode with a p-doped GaN (p-GaN) multi-well structure for high efficiency betavoltaic (BV) cells. The short-circuit current density (JSC) and opencircuit voltage (VOC) of the devices were investigated with variations of parameters such as the doping concentration, height, width of the p-GaN well region, well-to-well gap, and number of well regions. The JSC of the device was significantly improved by a wider depletion area, which was obtained by applying the multi-well structure. The optimized device achieved a higher output power density by 8.6% than that of the conventional diode due to the enhancement of JSC. The proposed device structure showed a high potential for a high efficiency BV cell candidate.
Keywords
GaN; Betavoltaic cell; Multi-well structure; High-efficiency; TCAD simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T.E. Everhart, P.H. Hoff, J. Appl. Phys. 42 (1971) 5837.   DOI
2 L.C. Olsen, P. Cabauy, B.J. Elkind, Phys. Today 35 (2012) 35.
3 M.G. Spencer, T. Alam, Appl. Phys. Rev. 6 (2019), 031305.   DOI
4 A. Ionascut-Nedelcescu, C. Carlone, A. Houdayer, H.J. vol Bardeleben, J.-L. Cantin, S. Raymond, IEEE Trans. Nucl. Sci. 49 (2002) 2733.   DOI
5 C.E. Munson, M. Arif, J. Streque, S. Belahsene, A. Martinez, A. Ramdane, Y.E. Gmili, J.-P. Salvestrini, P.L. Voss, A. Ougazzaden, J. Appl. Phys. 118 (2015), 105101.   DOI
6 S.I. Maximenko, J.E. Moore, C.A. Affouda, P.P. Jenkins, Sci. Rep. 9 (2019), 10892.   DOI
7 M. Lu, G.-G. Zhang, K. Fu, G.-H. Yu, D. Su, J.-F. Hu, Energy Convers. Manag. 52 (2011) 1955.   DOI
8 Z.J. Cheng, H.S. San, Z.H. Feng, B. Liu, X.Y. Chen, Electron. Lett. 47 (2011) 720.   DOI
9 N.A. Kuruoglu, O. Ozdemir, K. Bozkurt, Thin Solid Films 636 (2017) 746.   DOI
10 S. Aydin, E. Kam, Int. J. Energy Res. 43 (2019) 8725.
11 J.W. Murphy, L.F. Voss, C.D. Frye, Q. Shao, K. Kazkaz, M.A. Stoyer, R.A. Henderson, R.J. Nikolic, AIP Adv. 9 (2019), 065208.   DOI
12 M. Wu, J. Zhang, AIP Adv. 9 (2019), 075124.   DOI
13 S.J. Pearton, C.B. Vartuli, Appl. Phys. Lett. 67 (1995) 1435.   DOI
14 Atlas User's Manual (Silvaco International Inc., Santa Clara, CA).
15 H.K. Cho, C.S. Kim, C.-H. Hong, J. Appl. Phys. 94 (2003) 1485.   DOI
16 H. San, S. Yao, X. Wang, Z. Cheng, X. Chen, Appl. Radiat. Isot. 80 (2013) 17.   DOI
17 E. Challeja, F.J. Sanchez, D. Basak, M.A. Sanchez-Garcia, E. Munoz, I. Izpura, F. Calle, J.M.G. Tijero, J.L. Sanchez-Rojas, B. Beaumont, P. Lorenzini, P. Gibart, Phys. Rev. B 55 (1997) 4689.   DOI
18 M.R. Khan, J.R. Smith, R.P. Tompkins, S. Kelley, M. Litz, J. Russo, J. Leathersich, F. Shahedipour-Sandvik, K.A. Jones, A. Iliadis, Solid State Electron. 136 (2017) 24.   DOI
19 K. Hogan, M. Litz, F. Shahedipour-Sandvik, Appl. Radiat. Isot. 82 (2019) 119.   DOI
20 D. Ji, M.A. Laurent, A. Agarwal, W. Li, S. Mandal, S. Keller, S. Chowdhury, IEEE Trans. Electron. Dev. 64 (2017) 805.   DOI
21 Z. Cheng, X. Chen, H. San, Z. Feng, B. Liu, J. Micromech. Microeng. 22 (2012), 074011.   DOI
22 A.Y. Polyakov, I.-H. Lee, N.B. Smirnov, A.V. Govorkov, E.A. Kozhukhova, S.J. Pearton, J. Appl. Phys. 109 (2011), 123701.   DOI