Browse > Article
http://dx.doi.org/10.1016/j.net.2019.06.003

A nuclear battery based on silicon p-i-n structures with electroplating 63Ni layer  

Krasnov, Andrey (National University of Science and Technology "MISiS")
Legotin, Sergey (National University of Science and Technology "MISiS")
Kuzmina, Ksenia (National University of Science and Technology "MISiS")
Ershova, Nadezhda (JSC RITVERC GmbH)
Rogozev, Boris (JSC RITVERC GmbH)
Publication Information
Nuclear Engineering and Technology / v.51, no.8, 2019 , pp. 1978-1982 More about this Journal
Abstract
The paper presents the electrical performance measurements of a prototype nuclear battery and two types of betavoltaic cells. The electrical performance was assessed by measuring current-voltage properties (I-V) and determining the short-circuit current and the open-circuit voltage. With 63Ni as an irradiation source, the open-circuit voltage and the short-circuit current were determined as 1 V and 64 nA, respectively. The prototype consisted of 10 betavoltaic cells that were prepared using radioactive 63Ni. Electroplating of the radioactive 63Ni on an ohmic contact (Ti-Ni) was carried out at a current density of 20 mA/㎠. Two types of betavoltaic cells were studied: with an external 63Ni source and a 63Ni-covered source. Under irradiation of the 63Ni source with an activity of 10 mCi, the open-circuit voltage Voc of the fabricated cells reached 151 mV and 109 mV; the short-circuit current density Jsc was measured to be 72.9 nA/cm2 and 64.6 nA/㎠, respectively. The betavoltaic cells had the fill factor of 55% and 50%, respectively.
Keywords
Betavoltaic effect; Betavoltaic cell; Nuclear battery; Radioisotope $^{63}Ni$; Electroplating;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. Rappaport, The electron-voltaic effect in p-n junctions induced by betaparticle bombardment, Phys. Rev. 93 (1953) 246.   DOI
2 W.G. Plan, W. Van Roosbroeck, Radioactive and photoelectric p-n junction power sources, J. Appl. Phys. 25 (1954) 1422.   DOI
3 A.A. Krasnov, S.A. Legotin, YuK. Omel'chenko, et al., Optimization of energy conversion efficiency betavoltaic element based on silicon, Journal of nanoand electronic physics 7 (4) (2015), 04004 (4pp).
4 Zai-Jun CHENG, S.A.N. Hai-Sheng, Xu-Yuan CHEN, Bo LIU, F.E.N.G. Zhi-Hong, Demonstration of a high open-circuit voltage GaN betavoltaic microbattery, Chin. Phys. Lett. 28 (No. 7) (2011), 078401, https://doi.org/10.1088/0256-307X/28/7/078401.   DOI
5 Hao Wang, Xiao-bin Tang, Yun-Peng Liu, Zhi-Heng Xu, Min Liu, Da Chen, Temperature effect on betavoltaic microbatteries based on Si and GaAs under $^{63}Ni$ and $^{147}Pm$ irradiation, Nucl. Instrum. Methods Phys. Res. B 359 (2015) 36-43, https://doi.org/10.1016/j.nimb.2015.07.046.   DOI
6 Young Rang Uhm, Byoung Gun Choi, Jong Bum Kim, Dong-Hyuk Jeong, Kwang Jae Son, Study of a betavoltaic battery using electroplated Nickel-63 on Nickel foil as a power source, Nucl. Eng. Technol. 48 (2016) 773-777, https://doi.org/10.1016/j.net.2016.01.010.   DOI
7 L.I. Da-Rang, Lan JIANG, Jian-Hua YIN, Yuan-Yuan TAN, Nai LIN, Betavoltaic battery conversion efficiency improvement based on interlayer structures, Chin. Phys. Lett. 29 (No. 7) (2012), 078102, https://doi.org/10.1088/0256-307X/29/7/078102.   DOI
8 L.C. Olsen, Advanced betavoltaic power sources, in: Proc. 9th Intersociety Energy Conversion Engineering Conference, 1974, p. 754.
9 A.A. Krasnov, V.V. Starkov, S.A. Legotin, et al., Development of betavoltaic cell technology production based on microchannel silicon and its electrical parameters evaluation, Appl. Radiat. Isot. 121 (2017) 71-75, https://doi.org/10.1016/j.apradiso.2016.12.019.   DOI
10 Jinkui Chu, Xianggao Piao, Research of radioisotope microbattery based on bradio-voltaic effect, J. Micro/Nanolith. MEMS MOEMS 8 (2) (ApreJun 2009), 021180, https://doi.org/10.1117/1.3152000.   DOI
11 Betavoltaic study of a GaN p-i-n structure grown by metal-organic vapour phase epitaxy with a Ni-63 source//Neslihan Ayarci Kuruoglu, Orhan Ozdemir, Kutsal Bozkurt //Thin Solid Films 636 (2017) 746-750, https://doi.org/10.1016/j.tsf.2017.07.033.   DOI
12 Gholam Reza Ghasemi Nejad, Faezeh Rahmani, Design and simulation of betavoltaic angle sensor Based on $^{63}Ni-Si$, Appl. Radiat. Isot. 107 (2016) 346-352, https://doi.org/10.1016/j.apradiso.2015.11.025.   DOI
13 Vitaly Bormashov, Sergey Troschiev, Alexander Volkov, et al., Development of nuclear microbattery prototype based on Schottky barrier diamond diodes, Phys. Status Solidi 212 (No. 11) (2015) 2539-2547, https://doi.org/10.1002/pssa.201532214.   DOI
14 B. Ulmen, P.D. Desai, S. Moghaddam, G.H. Miley, R.I. Masel, Development of diode junction nuclear battery using $^{63}Ni$, J. Radioanal. Nucl. Chem. 282 (2009) 601-604, https://doi.org/10.1007/s10967-009-0320-3.   DOI
15 Tariq R. Alam, Mark A. Piersona, Mark A. Prelas, Beta particle transport and its impact on betavoltaic battery modeling, Appl. Radiat. Isot. 130 (2017) 80-89, https://doi.org/10.1016/j.apradiso.2017.09.009.   DOI
16 Gholam Reza Ghasemi Nejad, Faezeh Rahmani, Gholam Reza Abaeiani, Design and optimization of beta-cell temperature sensor based on $^{63}Ni-Si$, Appl. Radiat. Isot. 86 (2014) 46-51, https://doi.org/10.1016/j.apradiso.2013.12.027.   DOI
17 M.V.S. Chandrashekhar, Duggirala Rajesh, Michael G. Spencer, Lal Amit, 4 H SiC betavoltaic powered temperature transducer, Appl. Phys. Lett. 91 (2007), 053511, https://doi.org/10.1063/1.2767780.   DOI
18 Tariq R. Alam, Mark A. Pierson, Principles of betavoltaic battery design, J. Energy Power Sources 3 (No. 1) (2016) 11-41.
19 Muhammad R. Khan, Joshua R. Smith, Randy P. Tompkins, et al., Design and characterization of GaN p-i-n diodes for betavoltaic devices, Solid State Electron. 136 (2017) 24-29, https://doi.org/10.1016/j.sse.2017.06.010.   DOI
20 Shripad T. Revankar, Thomas E. Adams, Advances in betavoltaic power sources, J. Energy Power Sources 1 (No. 6) (2014) 321-329.
21 Faezeh Rahmani, Hossein Khosravinia, Optimization of Silicon parameters as a betavoltaic battery: comparison of Si p-n and Ni/Si Schottky barrier, Radiat. Phys. Chem. 125 (2016) 205-212, https://doi.org/10.1016/j.radphyschem.2016.04.012.   DOI