• Title/Summary/Keyword: beta type

Search Result 2,076, Processing Time 0.026 seconds

Association of Whole Grain Consumption with Nutrient Intakes and Metabolic Risk Factors in Generally Healthy Korean Middle-Aged Women (한국 중년여성의 전곡류 섭취수준과 영양소 섭취 및 대사적 위험지표의 연관성)

  • Kim, Ye Jin;Yum, Jin Hee;Lee, Seungmin
    • Korean Journal of Community Nutrition
    • /
    • v.19 no.2
    • /
    • pp.176-186
    • /
    • 2014
  • Objectives: Epidemiological studies have suggested that a higher consumption of whole grain foods can significantly reduce the risk of chronic diseases including cardiovascular diseases, type 2 diabetes and obesity. The objective of the current study was to examine associations among the consumption of whole grains and nutrient intakes and biochemical indicators associated with chronic diseases among generally healthy middle-aged Korean women. Methods: Using 24-hour recall data from the 2008-2009 National Health and Nutrition Examination Surveys, whole grain intake (g/day) was calculated for a total of generally healthy 1,953 subjects. The subjects were divided into three groups by the level of whole grain consumption (0 g/day, > 0 and < 20 g/day or ${\geq}20g/day$). Mean values or proportions of various nutrient intakes and metabolic risk factors were compared according to the level of whole grain consumption. All statistical analysis was conducted using SAS software version 9.2. Results: We observed that the overall consumption of whole grains was quite low. Specifically, 58.2% of subjects reported no whole grain consumption on the day of the survey, and the mean whole grain intake was only 15.3 g/day. The whole grain consumption was positively associated with intakes of various macro and micronutrients, namely, plant proteins and fats, dietary fiber, calcium, plant iron, potassium, zinc, vitamin A, ${\beta}$-carotene, thiamin, riboflavin, niacin, vitamin $B_6$ and folic acid. In addition, we found significantly decreasing trends in abdominal obesity and hypertriglyceridemia as whole grain intake levels increase. Conclusions: The study findings suggested the importance of promoting whole grain consumption as an efficient tool for improving various dietary aspects and preventing chronic diseases.

Thelephoric acid and Kynapcin-9 in Mushroom Polyozellus multiflex Inhibit Prolyl Endopeptidase In Vitro

  • Kwak, Ju-Yeon;Rhee, In-Koo;Lee, Kyung-Bok;Hwang, Ji-Sook;Yoo, Ick-Dong;Song, Kyung-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.6
    • /
    • pp.798-803
    • /
    • 1999
  • Prolyl endopeptidase [PEP; EC 3.4.21.26], a serine protease which is known to cleave peptide bonds on the carboxy side of a proline residue, plays an important role in the degradation of proline-containing neuropeptides that have been suggested to participate in learning and memory processes. An abnormal increase in the level of PEP, which can lead to generation of $A{\beta}$, is also suggested to be involved in Alzheimer's type senile dementia. In the course of screening PEP inhibitors from Basidiomycetes, the mushroom Polyozellus multiplex exhibited a high inhibitory activity against PEP. Two active compounds were isolated from the ethyl acetate soluble fraction by consecutive purification, using silica gel, Sephadex LH-20, and Lobar RP-18 chromatography. The chemical structures of these compounds were identified as thelephoric acid and 12-acety1-2,3,7,8-tetrahydroxy-[12H]-12-hydroxymethylbenzobis[I.2b,3.4b'] benzofuran-11-one (kynapcin-9) by spectral data including UV, IR, MS, HR-MS, $^1H-,{\;}^{13}C-$, and 2D-NMR. The $IC_{50}$ values of the thelephoric acid and kynapcin-9 were 0.157 ppm (446nM) and 0.087 ppm (212nM) and their inhibitor constants ($K_i$) were 0.73ppm ($2.09{\;}\mu\textrm{m}$) and 0.060 ppm (146 nM), respectively. Furthermore, they were non-competitive with a substrate in Dixon plots.

  • PDF

Purification and Characterization of Antifungal Chitinase from Pseudomonas sp. YHS-A2

  • Lee, Han-Seung;Lee, Hyun-Jung;Choi, Sung-Won;Her, Song;Oh, Doo-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • v.7 no.2
    • /
    • pp.107-113
    • /
    • 1997
  • A strain producing a high amount of chitinase was isolated from soil, identified as Pseudomonas sp., and tentatively named Pseudomonas sp. YHS-A2. An extracellular chitinase of Pseudomonas sp. YHS-A2 was purified according to the procedure of ammonium sulfate saturation, affinity adsorption, Sephadex G-100 gel filtration and Phenyl-sepharose CL-4B hydrophobic interaction column chromatography. The molecular weight of the purified enzyme was estimated to be 55 kDa on SDS-PAGE was confirmed by active staining. Optimal pH and temperature of the enzyme are pH 7.0 and $50^{\circ}C$, respectively, and the enzyme is stable between pH 5.0 and 8.0 and below $50^{\circ}C$. The main products of colloidal chitin by the chitinase were N-acetyl-D-glucosamine and N,N'-diacetylchitobiose both of which were detected by HPLC analysis. The enzyme is supposed to be a random-type endochitinase which can degrade any position of ${\beta}$-l,4-linkages of chitin and chitooligosaccharides. The chitinase inhibited the growth of some phytopathogenic fungi, Fusarium oxysporum, Botrytis cineria, and Mucor rouxii and these antifungal effects were thought to be due to the characteristics of endochitinase.

  • PDF

Cilostazol ameliorates diabetic nephropathy by inhibiting high-glucose-induced apoptosis

  • Chian, Chien-Wen;Lee, Yung-Shu;Lee, Yi-Ju;Chen, Ya-Hui;Wang, Chi-Ping;Lee, Wen-Chin;Lee, Huei-Jane
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.403-412
    • /
    • 2020
  • Diabetic nephropathy (DN) is a hyperglycemia-induced progressive development of renal insufficiency. Excessive glucose can increase mitochondrial reactive oxygen species (ROS) and induce cell damage, causing mitochondrial dysfunction. Our previous study indicated that cilostazol (CTZ) can reduce ROS levels and decelerate DN progression in streptozotocin (STZ)-induced type 1 diabetes. This study investigated the potential mechanisms of CTZ in rats with DN and in high glucose-treated mesangial cells. Male Sprague-Dawley rats were fed 5 mg/kg/day of CTZ after developing STZ-induced diabetes mellitus. Electron microscopy revealed that CTZ reduced the thickness of the glomerular basement membrane and improved mitochondrial morphology in mesangial cells of diabetic kidney. CTZ treatment reduced excessive kidney mitochondrial DNA copy numbers induced by hyperglycemia and interacted with the intrinsic pathway for regulating cell apoptosis as an antiapoptotic mechanism. In high-glucose-treated mesangial cells, CTZ reduced ROS production, altered the apoptotic status, and down-regulated transforming growth factor beta (TGF-β) and nuclear factor kappa light chain enhancer of activated B cells (NF-κB). Base on the results of our previous and current studies, CTZ deceleration of hyperglycemia-induced DN is attributable to ROS reduction and thereby maintenance of the mitochondrial function and reduction in TGF-β and NF-κB levels.

Introduction to the Indian Buffet Process: Theory and Applications (인도부페 프로세스의 소개: 이론과 응용)

  • Lee, Youngseon;Lee, Kyoungjae;Lee, Kwangmin;Lee, Jaeyong;Seo, Jinwook
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.2
    • /
    • pp.251-267
    • /
    • 2015
  • The Indian Buffet Process is a stochastic process on equivalence classes of binary matrices having finite rows and infinite columns. The Indian Buffet Process can be imposed as the prior distribution on the binary matrix in an infinite feature model. We describe the derivation of the Indian buffet process from a finite feature model, and briefly explain the relation between the Indian buffet process and the beta process. Using a Gaussian linear model, we describe three algorithms: Gibbs sampling algorithm, Stick-breaking algorithm and variational method, with application for finding features in image data. We also illustrate the use of the Indian Buffet Process in various type of analysis such as dyadic data analysis, network data analysis and independent component analysis.

Effect of Transplantation of Bone Marrow Stromal Cells and Dermal Fibroblasts on Collagen Synthesis (골수기질세포와 진피섬유모세포의 이식이 교원질 합성에 미치는 영향)

  • Choi, Won Il;Han, Seung-Kyu;Lee, Byung Il;Kim, Woo Kyung
    • Archives of Plastic Surgery
    • /
    • v.34 no.2
    • /
    • pp.156-162
    • /
    • 2007
  • Purpose: In the previous in vitro studies the bone marrow stromal cells(BSCs) have shown the superior effect for wound healing activity than fibroblasts, which includes cell proliferation, type I collagen synthesis, and the production of bFGF, VEGF and TGF-${\beta}$ in chronic wound healing. The aim of this study is to compare the effects of BSCs and fibroblasts on wound healing activity in vivo, especially on collagen synthesis. Methods: The fibroblasts and BSCs were harvested from patients and cultured. The cultured cells were infiltrated into the pores of polyethylene discs. These discs were divided into three groups according to the mixed cells. In groups I, II and III the discs were loaded with no cells, fibroblasts and BSCs, respectively. Twelve discs per group(total 36 discs) were made for this study. After creating 6 pockets in the back of each rats, each discs was implanted into each pockets. At three time intervals from 1 to 3 weeks, the implanted discs were harvested for the histological and quantitative analysis. The amount of collagen produced was evaluated using ELISA. Statistical comparisons were made using the Mann-Whitney U-test. Results: There was great difference in the collagen synthesis among the three groups by the 1st and 2nd weeks. The BSC group showed highest collagen level, followed by fibroblast group and no cell group(p<0.05). The 3rd week specimens also showed greater collagen amount in BSC and fibroblast groups compared to those of no cell group(p<0.05). However, there was little difference between BSC and fibroblast groups. Conclusion: This result demonstrates that BSC has superior effect on stimulating wound healing than fibroblast, which is currently used for wound healing.

Different Gene Expression on Human Blood by Administration of OLT-2 (OLT-2의 복용에 의한 인간 혈중 유전자 발현 변화)

  • Cha, Min-Ho;Moon, Jin-Seok;Jeon, Byung-Hun;Yoon, Yong-Gab;Yoon, Yoo-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.4
    • /
    • pp.853-860
    • /
    • 2006
  • This study was performed to investigate genes which are differently expressed in human blood by administrating of OLT-2. OLT-2 was medical precipitation composed of three medicinal herbs, Ginseng Radix, Astragali Radix, Glycyrrhizae Radix, and anti-leukemia effect of it was evaluated from Byung Hun Jeon of Wonkwang University this study was approved by Institutional Review Board of Korea Institute of Oriental Medicine (Taejeon, Korea) and four male subjects participated in this study. Gene expressions were evaluated by cDNA chip, in which 24,000 genes were spotted. Hierarchical cluster and biological process against the genes, which expression changes were more than 1.6 fold, were constructed by cluster 3.0 providing Stanford University and EASE(http://apps1 .maid.nih.gov/DAVID). Five groups were clustered according to their expression patterns. Group A contained gene decreased by OLT-2 and increased genes by OLT-2 were involved in Group B, C, D. In biological process, expression of genes involved in cytokine or cell calcium signaling, such as interleukin 18 and G-protein beta 4 were increased, but protein tyrosine phosphatase receptor type c, which function is cell adhesion between antigen-presenting cell and T or B-cell, was decreased by OLT-2. This study provides the most comprehensive available survey of gene expression changes in response to anti-leukemia effect of OLT-2 in human blood.

Transforming Growth Factor β Receptor Type I Inhibitor, Galunisertib, Has No Beneficial Effects on Aneurysmal Pathological Changes in Marfan Mice

  • Park, Jeong-Ho;Kim, Min-Seob;Ham, Seokran;Park, Eon Sub;Kim, Koung Li;Suh, Wonhee
    • Biomolecules & Therapeutics
    • /
    • v.28 no.1
    • /
    • pp.98-103
    • /
    • 2020
  • Marfan syndrome (MFS), a connective tissue disorder caused by mutations in the fibrillin-1 (Fbn1) gene, has vascular manifestations including aortic aneurysm, dissection, and rupture. Its vascular pathogenesis is assumed to be attributed to increased transforming growth factor β (TGFβ) signaling and blockade of excessive TGFβ signaling has been thought to prevent dissection and aneurysm formation. Here, we investigated whether galunisertib, a potent small-molecule inhibitor of TGFβ receptor I (TβRI), attenuates aneurysmal disease in a murine model of MFS (Fbn1C1039G/+) and compared the impact of galuninsertib on the MFS-related vascular pathogenesis with that of losartan, a prophylactic agent routinely used for patients with MFS. Fbn1C1039G/+ mice were administered galunisertib or losartan for 8 weeks, and their ascending aortas were assessed for histopathological changes and phosphorylation of Smad2 and extracellular signal-regulated kinase 1/2 (Erk1/2). Mice treated with galunisertib or losartan barely exhibited phosphorylated Smad2, suggesting that both drugs effectively blocked overactivated canonical TGFβ signaling in Fbn1C1039G/+ mice. However, galunisertib treatment did not attenuate disrupted medial wall architecture and only partially decreased Erk1/2 phosphorylation, whereas losartan significantly inhibited MFS-associated aortopathy and markedly decreased Erk1/2 phosphorylation in Fbn1C1039G/+ mice. These data unexpectedly revealed that galunisertib, a TβRI inhibitor, showed no benefits in aneurysmal disease in MFS mice although it completely blocked Smad2 phosphorylation. The significant losartan-induced inhibition of both aortic vascular pathogenesis and Smad2 phosphorylation implied that canonical TGFβ signaling might not prominently drive aneurysmal diseases in MFS mice.

Anti-Proliferative Activity of Nodosin, a Diterpenoid from Isodon serra, via Regulation of Wnt/β-Catenin Signaling Pathways in Human Colon Cancer Cells

  • Bae, Eun Seo;Kim, Young-Mi;Kim, Dong-Hwa;Byun, Woong Sub;Park, Hyen Joo;Chin, Young-Won;Lee, Sang Kook
    • Biomolecules & Therapeutics
    • /
    • v.28 no.5
    • /
    • pp.465-472
    • /
    • 2020
  • Colorectal cancer (CRC) is one of the most malignant type of cancers and its incidence is steadily increasing, due to life style factors that include western diet. Abnormal activation of canonical Wnt/β-catenin signaling pathway plays an important role in colorectal carcinogenesis. Therefore, targeting Wnt/β-catenin signaling has been considered a crucial strategy in the discovery of small molecules for CRC. In the present study, we found that Nodosin, an ent-kaurene diterpenoid isolated from Isodon serra, effectively inhibits the proliferation of human colon cancer HCT116 cells. Mechanistically, Nodosin effectively inhibited the overactivated transcriptional activity of β-catenin/T-cell factor (TCF) determined by Wnt/β-catenin reporter gene assay in HEK293 and HCT116 cells. The expression of Wnt/β-catenin target genes such as Axin2, cyclin D1, and survivin were also suppressed by Nodosin in HCT116 cells. Further study revealed that a longer exposure of Nodosin induced the G2/M phase cell cycle arrest and subsequently apoptosis in HCT116 cells. These findings suggest that the anti-proliferative activity of Nodosin in colorectal cancer cells might in part be associated with the regulation of Wnt/β-catenin signaling pathway.

The increased GUS gene inactivation over generation in Arabidopsis transgenic lines (애기장대 형질전환 식물체의 세대경과에 따른 GUS유전자의 비활성화에 관한 연구)

  • Park, Soon-Ki
    • Journal of Life Science
    • /
    • v.12 no.1
    • /
    • pp.67-76
    • /
    • 2002
  • The effect of transgene inactivation in T2, T3 and F2 generations was analyzed in progeny seedlings which had been generated by Agrobacterium (LBA4404/pBI121)-mediated transformation in Arabidopsis thaliana. In a system which investigated in the expression of $\beta$-glucuronidase(GUS)gene in kanamycin-resistant (ke $n^{R}$)seedlings, GUS inactivated seedlings were observed in 5 of 12 tested lines of T2 generation and the frequency of GUS inactivation was approximately 2.3%. Lines with multi-copies of T-DNA exhibited severe GUS gene inactivation with the frequency of 5.8% in T2 generation. In T3 generation lines exhibited GUS gene inactivation with the frequency of 1.3%. In contrast, inactivation increased dramatically up to 12.6% in multi-copy T-DNA line. A similar phenomenon was also found in F2 progeny from a transgenic line which had been crossed with wild-type Arabidopsis plant, WS-O (GUS gene inactivation frequency 9.9%). These results indicate that the foreign gene introduced into the plant was inactivated progressively in its transmission during subsequent generations and the transgenic line with multi-copies of T-DNA tended to show more increased inactivation.