• Title/Summary/Keyword: best-fit paradigm

Search Result 4, Processing Time 0.02 seconds

Function space formulation of the 3-noded distorted Timoshenko metric beam element

  • Manju, S.;Mukherjee, Somenath
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.615-626
    • /
    • 2019
  • The 3-noded metric Timoshenko beam element with an offset of the internal node from the element centre is used here to demonstrate the best-fit paradigm using function space formulation under locking and mesh distortion. The best-fit paradigm follows from the projection theorem describing finite element analysis which shows that the stresses computed by the displacement finite element procedure are the best approximation of the true stresses at an element level as well as global level. In this paper, closed form best-fit solutions are arrived for the 3-noded Timoshenko beam element through function space formulation by combining field consistency requirements and distortion effects for the element modelled in metric Cartesian coordinates. It is demonstrated through projection theorems how lock-free best-fit solutions are arrived even under mesh distortion by using a consistent definition for the shear strain field. It is shown how the field consistency enforced finite element solution differ from the best-fit solution by an extraneous response resulting from an additional spurious force vector. However, it can be observed that when the extraneous forces vanish fortuitously, the field consistent solution coincides with the best-fit strain solution.

An improved parametric formulation for the variationally correct distortion immune three-noded bar element

  • Mukherjee, Somenath;Manju, S.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.3
    • /
    • pp.261-281
    • /
    • 2011
  • A new method of formulation of a class of elements that are immune to mesh distortion effects is proposed here. The simple three-noded bar element with an offset of the internal node from the element center is employed here to demonstrate the method and the principles on which it is founded upon. Using the function space approach, the modified formulation is shown here to be superior to the conventional isoparametric version of the element since it satisfies the completeness requirement as the metric formulation, and yet it is in agreement with the best-fit paradigm in both the metric and the parametric domains. Furthermore, the element error is limited to only those that are permissible by the classical projection theorem of strains and stresses. Unlike its conventional counterpart, the modified element is thus not prone to any errors from mesh distortion. The element formulation is symmetric and thus satisfies the requirement of the conservative nature of problems associated with all self-adjoint differential operators. The present paper indicates that a proper mapping set for distortion immune elements constitutes geometric and displacement interpolations through parametric and metric shape functions respectively, with the metric components in the displacement/strain replaced by the equivalent geometric interpolation in parametric co-ordinates.

The unsymmetric finite element formulation and variational incorrectness

  • Prathap, G.;Manju, S.;Senthilkumar, V.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.1
    • /
    • pp.31-42
    • /
    • 2007
  • The unsymmetric finite element formulation has been proposed recently to improve predictions from distorted finite elements. Studies have also shown that this special formulation using parametric functions for the test functions and metric functions for the trial functions works surprisingly well because the former satisfy the continuity conditions while the latter ensure that the stress representation during finite element computation can retrieve in a best-fit manner, the actual variation of stress in the metric space. However, a question that remained was whether the unsymmetric formulation was variationally correct. Here we determine that it is not, using the simplest possible element to amplify the principles.

A Study on the Strategy of IoT Industry Development in the 4th Industrial Revolution: Focusing on the direction of business model innovation (4차 산업혁명 시대의 사물인터넷 산업 발전전략에 관한 연구: 기업측면의 비즈니스 모델혁신 방향을 중심으로)

  • Joeng, Min Eui;Yu, Song-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.57-75
    • /
    • 2019
  • In this paper, we conducted a study focusing on the innovation direction of the documentary model on the Internet of Things industry, which is the most actively industrialized among the core technologies of the 4th Industrial Revolution. Policy, economic, social, and technical issues were derived using PEST analysis for global trend analysis. It also presented future prospects for the Internet of Things industry of ICT-related global research institutes such as Gartner and International Data Corporation. Global research institutes predicted that competition in network technologies will be an issue for industrial Internet (IIoST) and IoT (Internet of Things) based on infrastructure and platforms. As a result of the PEST analysis, developed countries are pushing policies to respond to the fourth industrial revolution through cooperation of private (business/ research institutes) led by the government. It was also in the process of expanding related R&D budgets and establishing related policies in South Korea. On the economic side, the growth tax of the related industries (based on the aggregate value of the market) and the performance of the entity were reviewed. The growth of industries related to the fourth industrial revolution in advanced countries overseas was found to be faster than other industries, while in Korea, the growth of the "technical hardware and equipment" and "communication service" sectors was relatively low among industries related to the fourth industrial revolution. On the social side, it is expected to cause enormous ripple effects across society, largely due to changes in technology and industrial structure, changes in employment structure, changes in job volume, etc. On the technical side, changes were taking place in each industry, representing the health and medical sectors and manufacturing sectors, which were rapidly changing as they merged with the technology of the Fourth Industrial Revolution. In this paper, various management methodologies for innovation of existing business model were reviewed to cope with rapidly changing industrial environment due to the fourth industrial revolution. In addition, four criteria were established to select a management model to cope with the new business environment: 'Applicability', 'Agility', 'Diversity' and 'Connectivity'. The expert survey results in an AHP analysis showing that Business Model Canvas is best suited for business model innovation methodology. The results showed very high importance, 42.5 percent in terms of "Applicability", 48.1 percent in terms of "Agility", 47.6 percent in terms of "diversity" and 42.9 percent in terms of "connectivity." Thus, it was selected as a model that could be diversely applied according to the industrial ecology and paradigm shift. Business Model Canvas is a relatively recent management strategy that identifies the value of a business model through a nine-block approach as a methodology for business model innovation. It identifies the value of a business model through nine block approaches and covers the four key areas of business: customer, order, infrastructure, and business feasibility analysis. In the paper, the expansion and application direction of the nine blocks were presented from the perspective of the IoT company (ICT). In conclusion, the discussion of which Business Model Canvas models will be applied in the ICT convergence industry is described. Based on the nine blocks, if appropriate applications are carried out to suit the characteristics of the target company, various applications are possible, such as integration and removal of five blocks, seven blocks and so on, and segmentation of blocks that fit the characteristics. Future research needs to develop customized business innovation methodologies for Internet of Things companies, or those that are performing Internet-based services. In addition, in this study, the Business Model Canvas model was derived from expert opinion as a useful tool for innovation. For the expansion and demonstration of the research, a study on the usability of presenting detailed implementation strategies, such as various model application cases and application models for actual companies, is needed.