• Title/Summary/Keyword: best constant

Search Result 557, Processing Time 0.033 seconds

Optimization of Nozzle Arrangement in a Liquid Direct Contact Cooling System : Constant Inlet Flowrate Analysis (액체식 직접 접촉 냉각장치의 노즐배열 최적화 : 정풍량 해석)

  • Kim Won-Nyun;Kim Seo-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.402-409
    • /
    • 2006
  • For the design of a liquid direct contact cooling system, thermal and hydraulic analysis has been carried out. Well-known Zukauskas correlations are used to estimate the Nusselt number between the liquid refrigerant columns and the inlet airflow. The inlet air velocity is set at a typical value used in an actual showcase. For a constant column number, the best nozzle arrangement is determined for the maximum heat transfer. Heat transfer increases as the transverse pitch of the refrigerant column decreases. Among all the cases dealt with in the present study, the staggered arrangement with 140-columns of $14{\times}10$ shows the best thermal peformance and the expected temperature drop is $27.8^{\circ}C$. The effect of downstream refrigerant columns on the overall thermal performance is investigated as well.

Physico-chemical properties of green leaf volatiles (GLV) for ascertaining atmospheric fate and transport in fog

  • Vempati, Harsha;Vaitilingom, Mickael;Zhang, Zenghui;Liyana-Arachchi, Thilanga P.;Stevens, Christopher S.;Hung, Francisco R.;Valsaraj, Kalliat T.
    • Advances in environmental research
    • /
    • v.7 no.2
    • /
    • pp.139-159
    • /
    • 2018
  • Green Leaf Volatiles (GLVs) is a class of biogenically emitted oxygenated hydrocarbons that have been identified as a potential source of Secondary Organic Aerosols (SOA) via aqueous oxidation. The physico-chemical properties of GLVs are vital to understanding their fate and transport in the atmosphere via fog processing, but few experimental data are available. We studied the aqueous solubility, 1-octanol/water partition coefficient, and Henry's law constant ($K_H$) of five GLVs at $25^{\circ}C$: methyl jasmonate, methyl salicylate, 2-methyl-3-buten-2-ol, cis-3-hexen-1-ol, and cis-3-hexenyl acetate. Henry's law constant was also measured at temperatures and ionic strengths typical of fog. Experimental values are compared to scarcely-available literature values, as well as estimations using group and bond contribution methods, property-specific correlations and molecular dynamics simulations. From these values, the partition coefficients to the air-water interface were also calculated. The large Henry's law constant of methyl jasmonate ($8091{\pm}1121M{\cdot}atm^{-1}$) made it the most significant GLV for aqueous phase photochemistry. The HENRYWIN program's bond contribution method from the Estimation Programs Interface Suite (EPI Suite) produced the best estimate of the Henry's constant for GLVs. Estimations of 1-octanol/water partition coefficient and solubility are best when correlating an experimental value of one to find the other. Finally, the scavenging efficiency was calculated for each GLV indicating aqueous phase processing will be most important for methyl jasmonate.

CERTAIN FORM OF HILBERT-TYPE INEQUALITY USING NON-HOMOGENEOUS KERNEL OF HYPERBOLIC FUNCTIONS

  • Santosh Kaushik;Satish Kumar
    • Korean Journal of Mathematics
    • /
    • v.31 no.2
    • /
    • pp.189-201
    • /
    • 2023
  • In this article, we establish Hilbert-type integral inequalities with the help of a non-homogeneous kernel of hyperbolic function with best constant factor. We also study the obtained inequalities's equivalent form. Additionaly, several specific Hilbert's type inequalities with constant factors in the term of the rational fraction expansion of higher order derivatives of cotangent and cosine functions are presented.

Development of the Best Spherical Interpolation Method for Estimating Potential Natural Vegetation Distribution of the Globe (지구(地球)의 잠재자연식생분포(潜在自然植生分布)를 추정(推定)하기 위한 최적구면보간법(最適球面補間法)의 개발(開發))

  • Cha, Gyung Soo;Ochiai, Kamiya
    • Journal of Korean Society of Forest Science
    • /
    • v.86 no.1
    • /
    • pp.17-24
    • /
    • 1997
  • As the first step to estimate the potential natural vegetation distribution of the globe, the best spherical interpolation method was developed to the temperature and precipitation which have close relation to the distribution pattern of world natural vegetation. For developing the interpolation method, a named Light Climatic Dataset composed of 1,060 stations around the globe was randomly divided into halves of feeding side and target side. The discrepancy between the observed and estimated values at the target stations was compared with combinations of parameters and methods. The estimated values were calculated to each combination which is all-out, constant radius and constant station methods in the selection of the feeding stations, n square reciprocal and negative exponential functions in weighting function of distance between feeding stations and each target, and oval weighting in direction of the feeding stations from each target. As a result, it turned out that the spherical interpolation with negative exponential weighting function fed from the constant radius stations ovally weighed yields the best estimates both for temperature and for precipitation. The parameters for temperature are $30^{\circ}$ in constant radius, 0.78 in negative exponential function and 0.4 in oval weighting, and for precipitation are $30^{\circ}$, 0.53 and 0.4, respectively.

  • PDF

Flow Behavior and Performance Characteristics of Constant Air Volume Fan According to Different Hub Shape (허브 형상에 따른 정풍량 환기팬의 유동과 성능특성)

  • Lee, Ho-Ho;Choi, Hang-Cheol;Jung, Jae-Goo;Lee, Yoon-Pyo;Shin, Yoo-Hwan;Chung, Jin-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.2
    • /
    • pp.57-62
    • /
    • 2012
  • The constant air volume flow fan can maintain constant flow rate to the wide range of exit pressure. Therefore, the use of this fan is increasing recently for ventilation of high building. Brushless DC motor is adopted to this fan because that has advantages of compactness and performance. But this type of motor protrude from impeller hub side to fan inlet. The Impeller inlet flow is influenced by size of this obstacle called hub. In this paper, the influence of hub shape on the fan performance characteristics are experimentally and numerically analyzed. CFX 12.0 is used to perform the fan internal flow analysis and numerical results are compared with the experiments. Depending on hub shape, internal loss is generated and the performance and efficiency are reduced. The best performance is occurred around $h/b_1$ = 0.25. The results of this study will be contribute to initial design of constant air volume flow fan development.

Hardwired Distributed Arithmetic for Multiple Constant Multiplications and Its Applications for Transformation (다중 상수 곱셈을 위한 하드 와이어드 분산 연산)

  • Kim, Dae-Won;Choi, Jun-Rim
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.949-952
    • /
    • 2005
  • We propose the hardwired distributed arithmetic which is applied to multiple constant multiplications and the fixed data path in the inner product of fixed coefficient as a result of variable radix-2 multi-bit coding. Variable radix-2 multi-bit coding is to reduce the partial product in constant multiplication and minimize the number of addition and shifts. At results, this procedure reduces the number of partial products that the required multiplication timing is shortened, whereas the area reduced relative to the DA architecture. Also, this architecture shows the best performance for DCT/IDCT and DWT architecture in the point of area reduction up to 20% from reducing the partial products up to 40% maximally.

  • PDF

Current Controlled PWM for Multilevel Voltage-Source Inverters with Variable and Constant Switching Frequency Regulation Techniques: A Review

  • Gawande, S.P.;Ramteke, M.R.
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.302-314
    • /
    • 2014
  • Due to advancements in power electronics and inverter topologies, the current controlled multilevel voltage-source pulse width modulated (PWM) inverter is usually preferred for accurate control, quick response and high dynamic performance. A multilevel topology approach is found to be best suited for overcoming many problems arising from the use of high power converters. This paper presents a comprehensive review and comparative study of several current control (CC) techniques for multilevel inverters with a special emphasis on various approaches of the hysteresis current controller. Since the hysteresis CC technique poses a problem of variable switching frequency, a ramp-comparator controller and a predictive controller to attain constant switching frequency are described along with its quantitative comparison. Furthermore, various methods have been reviewed to achieve hysteresis current control PWM with constant switching frequency operation. This paper complies various guidelines to choose a particular method suitable for application at a given power level, switching frequency and dynamic response.

Dielectric Characteristics of Polytetrafluoroethylene-based Composites for Microwave Substrates with Formation Pressure (고주파 기판용 PTFE 복합체 형성 압력에 따른 유전 특성)

  • Choi, Hong Je;Chun, Myung Pyo;Cho, Yong Soo;Cho, Hak Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.6
    • /
    • pp.429-433
    • /
    • 2013
  • PTFE composites for use of microwave substrate were fabricated by impregnation and heat treatment fabrication with glass fabric. This study shows dielectric properties such as dielectric constant and loss can be controlled by thickness of PTFE composite with change of pressure condition in heating press process. The dielectric constant of the PTFE composites has decreasing tendency as given higher pressure condition. The dielectric loss has similar result too. Especially, the case of the dielectric loss was affected by the condition of pressure at heating press and had the best performance under 3 MPa. In order to see the reason why thickness conditions make different, their microstructures were also observed.

Prediction for Weather Strip Using Nonlinear Finite Element Analysis (비선형 유한요소해석을 이용한 웨더스트립의 특성예측)

  • Jang, Wang-Jin;Han, Chang-Yong;Woo, Chang-Su;Lee, Seong-Beom
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.11
    • /
    • pp.1022-1027
    • /
    • 2008
  • TPE is used as alternative for rubber, the best example is the weather strip for automobile. The nonlinear material properties of weather strip were important to predict the behaviors of weather strip. Uniaxial tension and equi-biaxial tension tests were performed to achieve the nonlinear material constant and stress-strain curves. The nonlinear material constant of weather strip is evaluated by using the nonlinear finite element analysis. In this paper, the prediction for weather strip is analyzed by using commercial finite element program, ANSYS. The nonlinear finite element analysis of weather strip is executed to predict the behavior of weather strip for automobile.