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SOBOLEV TRACE INEQUALITY ON W s,q(Rn)

Hee Chul Pak

Abstract. Sobolev trace inequalities on nonhomogeneous fractional

Sobolev spaces are established.

1. Trace inequalities on fractional Sobolev spaces

Sobolev trace inequality on nonhomogeneous Sobolev spaces Hs(Rn) is given
by: for 1 ≤ m < n and s > m

2 ,

‖τu‖
Hs−

m
2 (Rn−m)

≤ Cs,m‖u‖Hs(Rn),(1)

where τu ∈ Hs−m2 (Rn−m) is the trace of u ∈ Hs(Rn) restricted to the (n−m)-
dimensional subspace {x ∈ Rn : x = (x1, x2, . . . , xn−m, 0, 0, . . . , 0)} of Rn. The
best constant for this inequality is presented by H. Pak and Y. Park [6] as

Cs,m =

(
Γ(s− m

2 )

(4π)
m
2 Γ(s)

)1/2

together with various forms of extremal functions. A homogeneous version of
trace inequality (1) is obtained by A. Einav and M. Loss with the same sharp
constant [4]. Even though the trace of a given function is addressed as its
fundamental importance in the theory of boundary value problems of partial
differential equations, the continuity of trace operators has not been reported
yet even on general fractional Sobolev spaces W s,q(Rn).

This paper establishes fractional Sobolev trace inequalities on the nonhomo-
geneous fractional Sobolev spaces W s,q(Rn), 1 ≤ q ≤ 2. The main result can
be summarized as follows:

Theorem 1.1 (Fractional Sobolev trace inequality on W s,q(Rn)). Let p, q be
extended real numbers of 1

p + 1
q = 1, 1 ≤ q ≤ 2 and let s, t be real numbers with

s− n
(

1

q
− 1

p

)
> t ≥ m

p
.(2)
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Then for u ∈W s,q(Rn) with the trace τu on Rn−m, we have

‖τu‖
W
t−m

p
,p
(Rn−m)

≤ Cq,s,t,m‖u‖W s,q(Rn),(3)

where

Cq,s,t,m =
π
n−m
2q −

n
2p

2
m
2

q
2n−m

2q

p
2n−m

2p

[
Γ( sq−m2 )

Γ( sq2 )

] 1
q

 Γ( (s−t)p
2(p−2) −

n
2 )

Γ( (s−t)p
2(p−2) −

m
2 )

 1
q−

1
p

.(4)

The main difficulty of the proof of the theorem arises from the absence of
the isometry, and even from the lack of the continuity of the Fourier transform
on Lp(Rn) with p 6= 2.

The classical Sobolev trace inequalities on Rn+1 are given by

‖τu‖Lp(Rn) ≤ Aq,n‖∇u‖Lq(Rn+1)(5)

with

1− n
(

1

q
− 1

p

)
=

1

q

for some positive constant Aq,n which is independent of the function u. It can
be noticed that the range Lp(Rn) of the trace map is too big to constitute a
proper container of all the traces. Theorem 1.1 illustrates that all the traces of
the functions in W 1,q(Rn+1) are included at least in the space⋂

W t− 1
p ,p(Rn),

where the intersection is taken over all indices t satisfying (2).
The best constant of (5) is still open except for the cases q = 1 and q = 2.

A conjectured extremal function is the function of the form

τu(x) =
1

(1 + |x|2)
n+1−p
2(p−1)

.

J. Escobar first identified the best constant for the case q = 2 of (5) by ex-
ploiting the conformal invariance of this inequality and using characteristics of
an Einstein metric [5]. W. Beckner independently achieved the sharp constant
by inverting the inequality to a fractional integral on the dual space and using
the sharp Hardy-Littlewood-Sobolev inequality [3]. The limiting case p = 1 is
investigated by Y. Park [7]. We present an upper bound for the sharp constant
of the fractional Sobolev trace inequality and observe that Cq,s,t,m blows up to

infinity as t approaches to s−n
(

1
q −

1
p

)
. We also note that Cq,s,t,m converges

to 0 as s goes to infinity.
Some basic notations are listed. The fractional Sobolev spaces W s,q(Rn) of

functions with s ∈ R are defined as

W s,q(Rn) :=
{
u ∈ S ′(Rn) : F−1n

(
(1 + |ξ|2)s/2û

)
∈ Lq(Rn)

}
,
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where S ′(Rn) is the set of all tempered distributions on Rn and the Fourier
transform û = Fn(u) on Rn of the function u ∈ S(Rn) is defined by

û(ξ) = Fn(u)(ξ) =
1

(2π)n/2

∫
Rn
u(x)e−ix·ξ dx.

The nonhomogeneous Sobolev space W s,q(Rn) is equipped with the norm

‖u‖W s,q :=

(∫
Rn

∣∣∣F−1n (
(1 + |ξ|2)s/2û

)
(x)
∣∣∣q dx)1/q

.

2. Proof of Theorem 1.1

The nonhomogeneous Sobolev space W s,q(Rn) is the completion of Schwartz
class S(Rn). Hence, by the continuous extension argument, it suffices to show
that for u ∈ S(Rn), we have

‖τu‖
W
t−m

p
,p
(Rn−m)

≤Cq,s,t,m‖u‖W s,q(Rn),(6)

where Cq,s,t,m is the constant defined at (4). Here the trace τu of u is defined
by τu(x′) = u(x′, 0, . . . , 0) for x′ ∈ Rn−m.

To accomplish it, take u ∈ S(Rn) and set f := τu to have

f̂(ξ′) = Fn−m(f)(ξ′) =
1

(2π)
n−m

2

∫
Rn−m

f(x′)e−ix
′·ξ′dx′

=
1

(2π)
n−m

2

∫
Rn−m

u(x′, 0)e−ix
′·ξ′dx′

for ξ′ ∈ Rn−m. Apply the Fourier inversion formula in the ξ′′-variable to get

u(x′, 0) =
1

(2π)m/2

∫
Rm
Fm(u(x′, · ))(ξ′′)dξ′′

for x′ ∈ Rn−m, where Fm represents the Fourier transform with respect to
x′′-variable for (x′, x′′) ∈ Rn−m × Rm. Then Fubini’s theorem gives

f̂(ξ′) =
1

(2π)n/2

∫
Rn−m

(∫
Rm
Fm(u(x′, · ))(ξ′′) dξ′′

)
e−ix

′· ξ′dx′

=
1

(2π)n/2

∫
Rm

∫
Rn−m

(
1

(2π)m/2

∫
Rm

u(x′, x′′)e−ix
′′·ξ′′dx′′

)
e−ix

′· ξ′dx′dξ′′

=
1

(2π)m/2

∫
Rm

û(ξ′, ξ′′) dξ′′,(7)

where (ξ′, ξ′′), (x′, x′′) ∈ Rn−m × Rm. Let φ be a function in S(Rn−m) with

‖φ‖Lq(Rn−m) = 1. Multiply both sides of (7) by (1 + |ξ′|2)
t
2−

m
2p φ̂(−ξ′) and

integrate with respect to ξ′ to get∫
Rn−m

f̂(ξ′)(1 + |ξ′|2)
t
2−

m
2p φ̂(−ξ′)dξ′
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=
1

(2π)
m
2

∫
Rn
û(ξ′, ξ′′)(1 + |ξ′|2)

t
2−

m
2p φ̂(−ξ′)dξ(8)

for ξ = (ξ′, ξ′′) ∈ Rn−m ×Rm. Here the bar z indicates the complex conjugate
of z. The left hand side of (8) becomes∫

Rn−m
f̂(ξ′)(1 + |ξ′|2)

t
2−

m
2p φ̂(−ξ′)dξ′

=

∫
Rn−m

[
f̂(ξ′)(1 + |ξ′|2)

t
2−

m
2p

]∨
(x′)φ(x′) dx′,(9)

where g∨ represents the Fourier inversion F−1n (g) of the function g. Hölder’s
inequality on the right hand side of (8) yields that∣∣∣∣∣ 1

(2π)
m
2

∫
Rn
û(ξ)(1 + |ξ|2)

s
2φ
∨

(ξ′)
(1 + |ξ′|2)

t
2−

m
2p

(1 + |ξ|2)
s
2

dξ

∣∣∣∣∣
≤ 1

(2π)
m
2

(∫
Rn

∣∣û(ξ)(1 + |ξ|2)
s
2

∣∣p dξ)1
p

(∫
Rn
|φ∨(ξ′)|q (1 + |ξ′|2)

tq
2 −

mq
2p

(1 + |ξ|2)
sq
2

dξ

)1
q

(10)

with 1
p + 1

q = 1.

Lemma 2.1. For α > m
2 , we have∫

Rm

(1 + |ξ′|2)α−
m
2

(1 + |ξ′|2 + |ξ′′|2)α
dξ′′ = π

m
2

Γ(α− m
2 )

Γ(α)
.(11)

Proof. A direct computation reveals that for ξ = (ξ′, ξn) ∈ Rn−1 × R,∫
R

1

(1 + |ξ′|2 + ξ2n)α
dξn =

∫ π
2

−π2

1

(1 + |ξ′|2)α−
1
2

(1 + tan2 θ)−α+1dθ

=
1

(1 + |ξ′|2)α−
1
2

(
2

∫ π
2

0

cos2α−2 θdθ

)

=
√
π

Γ(α− 1
2 )

Γ(α)

1

(1 + |ξ′|2)α−
1
2

.

An induction argument gives that for fixed ξ′ ∈ Rn−m,∫
Rm

1

(1 + |ξ′|2 + |ξ′′|2)α
dξ′′ = π

m
2

Γ(α− m
2 )

Γ(α)

1

(1 + |ξ′|2)α−
m
2
.

This implies the identity (11). 2

Lemma 2.1 and Hölder’s inequality imply that∫
Rn
|φ∨(ξ′)|q (1 + |ξ′|2)

tq
2 −

mq
2p

(1 + |ξ|2)
sq
2

dξ
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= π
m
2

Γ( sq2 −
m
2 )

Γ( sq2 )

∫
Rn−m

|φ∨(ξ′)|q

(1 + |ξ′|2)
(s−t)q

2 +
m(q−2)

2

dξ′

≤ π
m
2

Γ( sq2 −
m
2 )

Γ( sq2 )

(∫
Rn−m

|φ∨(ξ′)|pdξ′
) q
p

×

(∫
Rn−m

1

(1 + |ξ′|2)
(s−t)p
2(p−2)

−m2
dξ′

) q
p (p−2)

= π
m
2

Γ( sq2 −
m
2 )

Γ( sq2 )

π n−m2 Γ( (s−t)p
2(p−2) −

n
2 )

Γ( (s−t)p
2(p−2) −

m
2 )


q
p (p−2)(∫

Rn−m
|φ∨(ξ′)|pdξ′

) q
p

.(12)

By virtue of the Babenko-Beckner’s inequality [1, 2], we have(∫
Rn−m

|φ∨(ξ′)|pdξ′
) 1
p

≤ q
n−m
2q

p
n−m
2p

(∫
Rn−m

|φ(ξ′)|qdξ′
) 1
q

=
q
n−m
2q

p
n−m
2p

(13)

and(∫
Rn

∣∣û(ξ)(1 + |ξ|2)
s
2

∣∣p dξ)1/p

=

(∫
Rn

∣∣Fn ◦ F−1n (
û(ξ)(1 + |ξ|2)

s
2

)∣∣p dξ)1/p

≤ q
n
2q

p
n
2p

(∫
Rn

∣∣∣(û(ξ)(1 + |ξ|2)
s
2

)∨
(x)
∣∣∣q dx)1/q

.(14)

Collecting the estimates (8), (9), (10), (12), (13) and (14), we establish the
inequality (6). The proof is now completed. 2

Remark 2.2. Let p, q be extended real numbers of 1
p + 1

q = 1, 1 ≤ q ≤ 2

and let s, t be real numbers with t − n
(

1
q −

1
p

)
> s > t

2 + m
p . Then for any

g ∈W t−mq ,q(Rn−m), there is a function u ∈W s,p(Rn) such that

τu = g.

In fact, for g ∈W t−mq ,q(Rn−m), we consider the function

u(x) := 2m/2
Γ(s)

Γ(s− m
2 )

(
ĝ(ξ′)

(1 + |ξ′|2)s−
m
2

(1 + |ξ|2)s

)∨
(x).

Then by the identity (7) together with Lemma 2.1, we observe that

τ̂u(ξ′) =
1

(2π)m/2

∫
Rm

û(ξ′, ξ′′) dξ′′ = ĝ(ξ′).

In order to demonstrate that u belongs to W s,p(Rn), we first note that:

Lemma 2.3. For α > m
p and β ∈ R, we have∫

Rn

∣∣∣∣ĝ(ξ′)
(1 + |ξ′|2)β−

m
2

(1 + |ξ|2)α

∣∣∣∣p dξ = C

∫
Rn−m

∣∣∣ ĝ(ξ′)(1 + |ξ′|2)β−α−
m
2q

∣∣∣p dξ′
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for some constant C.

Proof. The result follows from a direct computation and Lemma 2.1. 2

The same arguments used in the proof of Theorem 1.1 yields: for any
‖φ‖Lq(Rn) = 1∣∣∣∣∫

Rn

(
û(ξ)(1 + |ξ|2)

s
2

)∨
φ(x) dx

∣∣∣∣= C1

∣∣∣∣∫
Rn
ĝ(ξ′)

(1 + |ξ′|2)s−
m
2

(1 + |ξ|2)
s
2

φ
∨

(ξ) dξ

∣∣∣∣
.

(∫
Rn

∣∣∣∣ĝ(ξ′)
(1 + |ξ′|2)s−

m
2

(1 + |ξ|2)s−
t
2

∣∣∣∣p dξ)1/p

×

(∫
Rn

∣∣∣∣∣ φ
∨

(ξ)

(1 + |ξ|2)
t−s
2

∣∣∣∣∣
q

dξ

)1/q

= C2

(∫
Rn−m

∣∣∣(ĝ(ξ′)(1 + |ξ′|2)
t
2−

m
2q

)∣∣∣p dξ′)1/p

.

(∫
Rn−m

∣∣∣∣(ĝ(ξ′)(1 + |ξ′|2)
t
2−

m
2q

)∨
(x′)

∣∣∣∣q dx′)1/q

for some positive constants C1 and C2. Hence we can see that u belongs to
W s,p(Rn) and τu = g.
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