• Title/Summary/Keyword: berthing

Search Result 177, Processing Time 0.023 seconds

Motion Identification using Neural Networks and Its Application to Automatic Ship Berthing under Wind

  • Im, Nam-Kyun;Kazuhiko Hasegawa
    • Journal of Ship and Ocean Technology
    • /
    • v.6 no.1
    • /
    • pp.16-26
    • /
    • 2002
  • In this paper, a motion identification method using neural networks is applied to automatic ship berthing to overcome disturbance effects. Motion identification is used to estimate the effect of environmental disturbance. Two rule-based algorithms have been developed to over-come disturbance. The first rule based-algorithm was designed to overcome lateral disturbance when a ship's lateral speed is affected by it. The second rule-based algorithm was also designed to overcome longitudinal disturbance when a ship's angular velocity is changed by it. Finally, numerical simulations for automatic berthing are carried out, and the suggested control system is proved to be more practical under disturbance circumstances.

A Study on the Automatic Berthing Control of a Ship by Artificical Neural Network (인공신경망에 의한 선박의 자동접안에 관한 연구)

  • Lee, Seung-Keon;Lee, Gyoung-Woo;Lee, Seong-Jae;Jeong, Sung-Ryong
    • Journal of the Korean Institute of Navigation
    • /
    • v.21 no.4
    • /
    • pp.21-28
    • /
    • 1997
  • Along with the rapid growth of shipping and transportation , the size of a ship larger and larger. Low speed maneuverabililty of a full ship has been received a great deal of attention concerting about the navigation safety, especially in the harbour area of waterway. And, the iperation of the full ship in harbour area is one fo tehmost difficult technique. Usually highly experienced experts can make a suitable decision considering various propeller ,rudder actions and environmental conditions. The Artificial Neural Network is applied to the automatic berthing control of a ship. The teaching data are made by the berthing simulation of a ship on the computer. And, the layer neural network is used and the 'Error Back-Propagation Algorithm' is used to teach the neural network. Finally, it is shown that the berthing control is successfully done by the established neural network.

  • PDF

A Study on the Modeling of Transitional Lateral Force Acting on the Berthing Ship by CFD

  • Kong, Gil-Young;Lee, Yun-Sok;Lee, Sang-Min
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1196-1202
    • /
    • 2004
  • To evaluate the unsteady motion in laterally berthing maneuver, it is necessary to estimate clearly the magnitudes and properties of hydrodynamic forces acting on ship hull in shallow water. A numerical simulation has been performed to investigate quantitatively the hydrodynamic force according to water depth for Wigley model using the CFD (Computational Fluid Dynamics) technique. By comparing the computational results with the experimental ones, the validity of the CFD method was verified. The numerical solutions successfully captured some features of transient flow around the berthing ship. The transitional lateral force in a state ranging from the rest to the uniform motion is modeled by using the concept of circulation.

Automatic Berthing Finite-time Control Considering Transmission Load Reduction

  • Liu Yang;Im Nam-kyun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.168-169
    • /
    • 2022
  • In this study, we investigates the auto-berthing problem for the underactuated surface vessel in the presence of constraints of dynamic uncertainties, finite time, transmission load, and environmental disturbance. A novel control scheme is proposed by fusing the finite time control technology and the event-triggered input algorithm. In the algorithm, differential homeomorphism coordinate the transformation is used to solve the problem of underactuation. Then, we apply the finite time technology and event triggered to save the time of the berthing vessel and relieve transmission burden between the controller and the vessel respectively. Moreover, a radial basis function network is used to approximate unknown nonlinear functions, and minimum learning parameters are introduced to lessen the computational complexity. A sufficient effort has been made to verify the stability of the closed-loop system based on the Lyapunov stability theory. Finally, simulation results display the effectiveness of the proposed scheme.

  • PDF

Analysis of Berthing Velocity of Ship and Application to Safe Pilotage (선박접안속도 분석과 안전도선에의 활용)

  • Ik-Soon Cho;Eun-Ji Kang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.149-150
    • /
    • 2022
  • External forces acting on the mooring facilities include wave, wind, current, and ship's kinetic energy. In particular, the ship's kinetic energy is changing as the ship become larger, and larger carrying capacity. It was intended to analyze the berthing velocity measurement data at on tanker terminals equipped with a DAS (Docking Aid System) through statistical means and algorithms and use it as basic data for safer and more efficient pier design and pilotage.

  • PDF

Development and Experimental Evaluation of a Ship Berthing System Using Active Fenders (능동형 펜더 기반의 접안지원시스템 개발 및 실선실험)

  • Kim, Chang-Woo;Lee, Dong-Hun;Park, Jung-Suk;Kim, Young-Bok
    • Journal of Navigation and Port Research
    • /
    • v.44 no.6
    • /
    • pp.494-500
    • /
    • 2020
  • Maneuvering vessels in the harbor is an interesting problem in marine cybernetics. The vessel, operated by the pilot and moving very slowly in shallow water, usually is assisted by thrusters, the main propulsion system, and tugboats. In this paper, we suggest a new vessel berthing technique using dampers (cylinder-type fenders) and a system of winches for complex and dangerous berthing situations. We found that control of the fender stroke and rope tension enabled a safe and quick berthing process. The effectiveness and usefulness of this berthing system was verified using a ship of about 2,000 tons.

A Systematic Approach to Decide Maximum Berthing Ship Size Coupled with Berth Design Criteria - A Case of Port of Ulsan - (부두 설계기준을 고려한 접안가능 최대선형의 결정에 관한 연구 - 울산항을 중심으로 -)

  • Jun, Sang-Yup;Kim, Young-Mo;Woo, Byung-Goo;Chung, Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.45-54
    • /
    • 2008
  • "Summer Deadweight Tonnage(SDWT)" is used as the criteria of the berthing capacity when establishing port entry limits under current guideline. The important factors affecting to the maximum ship size of possible berthing are mass, length and breath of the ship rather than deadweight. Therefore this guideline should be modified to ensure safety and efficient operation of berth. This study aimed to propose a rational guideline to adjust the berthing capacity. In order to decide proper berthing capacity, three berths of Port of Ulsan were selected and systematic evaluations for the safety of passage transit, berthing maneuvers, ship motions at berth and stabilities of structures were conducted. Small changes of ship size had little effect on those characteristics and little significant differences were found according to the increase of ship size at the same displacement. The evaluation results of the increasement of 50% of berthing capacity at 20,000 DWT, 25% at 40,000 DWT and 13% at 150,000 DWT were within the design criteria in which the berths were built. Therefore, if the channel width, diameter of turning circle, berth length and mooring arrangements are satisfied with the criteria, the current berth limitations should be adjusted by the displacement. as substitute for the deadweight.

  • PDF

Design of Automatic Ship Maneuvering Control System (선박 자동 운항 제어기의 설계)

  • Kwak Moon Kyu;Suh Sang-Hyun
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.2 no.1
    • /
    • pp.90-101
    • /
    • 1999
  • This paper is concerned with the design of automatic ship maneuvering system including automatic path tracking controller and automatic berthing controller. The optimal control technique is employed to design the automatic path tracking controller, which is based on the linearized equations of ship motion. The numerical example shows that the automatic path tracking controller is capable of tracking the line between way points which are determined by pilot a priori. The decentralized control technique is employed to design the automatic berthing controller. In addition to the automatic path tracking controller, the fuzzy logic controller is used to control the forward speed. The numerical example shows that the automatic berthing controller can be successfully implemented.

  • PDF

Optimal Control Design for Automatic Ship Berthing by Using Bow and Stern Thrusters

  • Bui, Van Phuoc;Jeong, Jeong-Soon;Kim, Young-Bok;Kim, Dong-Wook
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.10-17
    • /
    • 2010
  • Conventionally, because it is difficult to control a ship in shallow water and because attempting to do so creates unwanted environmental effects, maneuvering ships in the harbor area for berthing is usually done with the assistance of tugboats. In this paper, we propose a new method for berthing ships automatically by using bow and stern thrusters. Specifically, a steering motion model of a ship is considered, and parameters in the equation are evaluated by the system identification technique. An optimal controller based on observations was designed from the linearization of the non-linear ship motion in the horizontal plane. It is used to reduce the uncertainty about the ship's dynamics and reduce measurement requirements. The performance of the controller was also analyzed for its robustness relative to avoiding disturbing the environment due to winds, currents, and wave-drift forces. Experiments were conducted to estimate the potential for identifying result and the design of the controller. Specifically, in this paper, the system modeling and tracking control approach are discussed based on a two-degree-of-freedom (2DOF) servo-system design.

Ship nonlinear-feedback course keeping algorithm based on MMG model driven by bipolar sigmoid function for berthing

  • Zhang, Qiang;Zhang, Xian-ku;Im, Nam-kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.525-536
    • /
    • 2017
  • Course keeping is hard to implement under the condition of the propeller stopping or reversing at slow speed for berthing due to the ship's dynamic motion becoming highly nonlinear. To solve this problem, a practical Maneuvering Modeling Group (MMG) ship mathematic model with propeller reversing transverse forces and low speed correction is first discussed to be applied for the right-handed single-screw ship. Secondly, a novel PID-based nonlinear feedback algorithm driven by bipolar sigmoid function is proposed. The PID parameters are determined by a closed-loop gain shaping algorithm directly, while the closed-loop gain shaping theory was employed for effects analysis of this algorithm. Finally, simulation experiments were carried out on an LPG ship. It is shown that the energy consumption and the smoothness performance of the nonlinear feedback control are reduced by 4.2% and 14.6% with satisfactory control effects; the proposed algorithm has the advantages of robustness, energy saving and safety in berthing practice.