• Title/Summary/Keyword: benzoic acid

Search Result 392, Processing Time 0.032 seconds

Effect of Agricultural Practice and Soil Chemical Properties on Community-level Physiological Profiles (CLPP) of Soil Bacteria in Rice Fields During the Non-growing Season (논의 휴한기 이용형태와 토양화학성이 토양세균의 탄소원 이용에 미치는 영향)

  • Eo, Jinu;Kim, Myung-Hyun;Song, Young Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.219-224
    • /
    • 2019
  • BACKGROUND: Soil bacteria play important roles in organic matter decomposition and nutrient cycling during the non-growing season. The purpose of this study was to investigate the effects of soil management and chemical properties on the utilization of carbon sources by soil bacteria in paddy fields. METHODS AND RESULTS: The Biolog EcoPlate was used for analyzing community-level carbon substrate utilization profiles of soil bacteria. Soils were collected from the following three types of areas: plain, interface and mountain areas, which were tested to investigate the topology effect. The results of canonical correspondence analysis and Kendall rank correlation analysis showed that soil C/N ratio and NH4+ influenced utilization of carbon sources by bacteria. The utilization of carbohydrates and complex carbon sources were positively correlated with NH4+ concentration. Cultivated paddy fields were compared with adjacent abandoned fields to investigate the impact of cultivation cessation. The level of utilization of putrescine was lower in abandoned fields than in cultivated fields. Monoculture fields were compared with double cropping fields cultivated with barley to investigate the impact of winter crop cultivation. Cropping system altered bacterial use of carbon sources, as reflected by the enhanced utilization of 2-hydroxy benzoic acid under monoculture conditions. CONCLUSION: These results show that soil use intensity and topological characteristics have a minimal impact on soil bacterial functioning in relation to carbon substrate utilization. Moreover, soil chemical properties were found to be important factors determining the physiological profile of the soil bacterial community in paddy fields.

Isolation of secondary metabolites from an Arctic bacterium, Pseudomonas aeruginosa and their antimicrobial activities (북극유래 박테리아, Pseudomonas aeruginosa로 부터 대사산물들의 분리 및 항진균 활성)

  • Youn, Ui Joung;Kim, Min Ju;Han, Se Jong;Yim, Jung Han
    • Korean Journal of Microbiology
    • /
    • v.52 no.4
    • /
    • pp.415-420
    • /
    • 2016
  • Chemical study of an Arctic bacterium, Pseudomonas aeruginosa (Pseudomonadaceae) led to the isolation of two diketopiperazines 1 and 2, two phenazine alkaloids 3 and 4, and an indole carbaldehyde 5, along with a benzoic acid derivative 6. The structures of the compounds were confirmed by 1D and 2D NMR, and MS experiments, as well as by comparison of their data with published values. Among the isolates, compounds 5 and 6 were isolated for the first time from P. aeruginosa of the seawater of Arctic Chuckchi Sea. Antimicrobial activities of compounds 1‒6 against a Staphylococcus aureus and Candida albicans were evaluated.

The Allelopathic Effects of Aqueous Chemicals of Ambrosia artemisiifolia on Selected Plants (돼지풀의 수용추출물이 수종 식물에 미치는 알레로파시 효과)

  • Kim, Hae-Su;Kim, Jong-Hui
    • The Korean Journal of Ecology
    • /
    • v.24 no.1
    • /
    • pp.67-73
    • /
    • 2001
  • The allelochemicals from aqueous extracts of A. artemisiifolia var. elatior leaves and roots were analyzed and 60 compounds in the leaf and 53 compounds in the roots were inspected. The main compounds were acids,. especially phenolic acids and some non-acids. The total amount of compounds in the aqueous extracts of A. artemisiifolia var. elatior leaves was higher than in the roots. The aqueous extracts had much high inhibiting effects on the germination and seedling elongation of selected plants. In both cases, the inhibiting effects were very different with different selected plants and increased significantly as the concentration of aqueous extracts increased. Capsicum annum, Achyranthes japonica, and Oenothera odorta plants were suffered more significant inhibition effects than Raphnus sativus, Cucumis sativus, Brassica camperstris plants. Aqueous extracts from leaves had slightly higher inhibition effects than the aqueous extracts from the roots.

  • PDF

A Fatal Case of Dicamba Intoxication (Dicamba 급성 중독으로 인한 사망 1례)

  • Hong Dae-Young;Um Wook-Hyun;Lee Kyoung-Mi;Kim Ji-Hye;Han Seung-Baik;Suh Joo-Hyun;Kim Jun-Sig;Roh Hyung-Keun
    • Journal of The Korean Society of Clinical Toxicology
    • /
    • v.4 no.1
    • /
    • pp.69-72
    • /
    • 2006
  • Dicamba is a benzoic acid and classified as a chemically related chlorophenoxy herbicide which is widely used for the control of broad-leaved weeds. While the chlorophenoxy herbicide poisoning is known to be uncommon, its ingestion can result in serious or sometimes fatal outcome. A 65-year-old man ingested about 300 ml of dicamba in a suicidal attempt and three hours later he was admitted hospital, complaining abdominal pain, nausea and vomiting. On admission his vital signs were normal and laboratory findings were not remarkable except metabolic acidosis in arterial blood gas analysis. Shortly after the admission endotracheal tube was inserted due to altered mental state and activated charcoal was given after performing gastric lavage. However, his vital signs became unstable 6hrs after the ingestion and mechanical ventilation was started with administration of inotropic agents. In spite of urine alkalization for rapid elimination of the absorbed dicamba, the metabolic acidosis was aggravated with concomitant rhabdomyolysis and acute renal failure, and he died 24 hrs after the ingestion.

  • PDF

Effects of Dietary Supplementation with Blended Essential Oils on Growth Performance, Nutrient Digestibility, Blood Profiles and Fecal Characteristics in Weanling Pigs

  • Huang, Y.;Yoo, J.S.;Kim, H.J.;Wang, Y.;Chen, Y.J.;Cho, J.H.;Kim, I.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.5
    • /
    • pp.607-613
    • /
    • 2010
  • The influence of dietary supplementation with blended essential oil on growth performance, nutrient digestibility, blood profiles and fecal characteristics was evaluated in 125 crossed ((Duroc ${\times}$Yorkshire) ${\times}$Landrace) pigs (6.21${\pm}$0.20 kg initial body weight and 21 d average age). The pigs were allotted to the following treatments: i) NC (antibiotic free diet), ii) PC (NC diet+44 ppm tylosin), iii) T1 (NC diet+0.1% essential oil), iv) T2 (NC diet+0.1% essential oil (with 0.3% Benzoic acid)) and v) T3 (NC+22 ppm tylosin and 0.05% essential oil). Average daily gain (ADG) was improved in the T2 group on d 14 (p<0.05). In addition, nutrient digestibility was partially affected (both positively and negatively) by the treatments. Furthermore, the immune system was stimulated and the fecal pH and fecal noxious gases were improved in pigs that received the diets supplemented with essential oil (p<0.05). The appearance and score of diarrhea also tended to be lower in pigs that were subjected to the essential oil treatments. Collectively, the results of this study indicate that supplementation of the diet with blended essential oils could replace treatment with antibiotics to improve growth performance and fecal characteristics.

Effect of Ethanol Extract of Quercus mongolica Leaf as Natural Food Preservative (신갈나무 잎 에탄올 추출물의 식품보존제 효과)

  • 오덕환;공영준
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.2
    • /
    • pp.243-249
    • /
    • 2001
  • This study was investigated to determine the antimicrobial effect of the ethanol extract of Quercus mongolica leaf on microbial growth. The ethanol extract at the concentration of $250\;\mu\textrm{g}/mL\;and\;500\;\mu\textrm{g}/mL$ inhibited the growth of gram positive and gram negative food-borne disease bacteria for 40 hours in tryptic soy broth, respectively. Antimicrobial activity of the ethanol extract from Quercus mongolica leaf was not affected by pH and heat treatment. The comparision between ethanol extract and commercially available preservatives on antimicrobial activity in food system was conducted. When the 0.1% ethanol extract of Quercus mongolica leaf was added to pine needle drink and carrot juice, antimicrobial activity was similar to those of containing 0.05% benzoic acid and 0.5% grapefruit seed extract. Also addition of 2~3% ethanol extract to the soybean paste inhibited the microbial growth up to 7 week, comparable to the inhibition of 2% ethanol. Thus, this results indicate that the ethanol extract of Quercus mongolica leaf may be useful as natural antimicrobial agents.

  • PDF

Photocatalytic activity of $TiO_2$ on nano-diamond powder prepared by Atomic Layer Deposition

  • Kim, Kwang-Dae;Dey, Nilay Kumar;Seo, Hyun-Ook;Kim, Dong-Wun;Nam, Jong-Won;Sim, Chae-Won;Jeong, Myung-Geun;Kim, Young-Dok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.425-425
    • /
    • 2011
  • The photocatalytic decomposition of toluene gas was investigated with $TiO_2$ on nano-diamond powder (NDP) under UV irradiation. Atomic layer deposition (ALD) was used for the growth of $TiO_2$ on the NDP. The structure and surface properties of catalysts were characterized by X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS) and Transmission Electron Microscopy (TEM). The photocatalytic activity for the toluene decomposition was evaluated by measuring the concentration change of toluene and $CO_2$ gas with gas chromatography (GC)-flame ionization detector (FID) system. The photocatalytic activities of $TiO_2$/NDP catalysts were compared with that of P-25. The rate of initial photocatalytic decomposition of toluene for the $TiO_2$/NDP catalysts was relatively lower when compared to P-25. The photocatalytic activity of P-25 was rapidly decreased with time, whereas, the deactivation of $TiO_2$/NDP catalysts was less pronounced. Therefore, as the reaction time increased, the photocatalytic activity of $TiO_2$/NDP catalysts became higher than that of P-25. The intermediates such as benzaldehyde or benzoic acid, etc were more easily adhered to the active site on the P-25 surface during reaction, resulting in easier deactivation of P-25. These results could be confirmed using FT-IR spectroscopy. We suggest that the NDP used as substrate can reduce the deactivation of $TiO_2$ on the surface.

  • PDF

Failure Analysis on Scale Formation of Thermostat Housing and Development of Accelerated Test Methodology (써모스타트 하우징의 침전물 생성에 관한 고장분석 및 가속시험법 개발)

  • Cho, In-Hee;Hyung, Sin-Jong;Choi, Kil-Yeong;Weon, Jong-Il
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.177-185
    • /
    • 2009
  • The failure analysis of scales deposited on automotive thermostat housing has been carried out. Observations using energy dispersive spectroscopy and electron probe micro analyzer indicate that the main components of scales are some of additives of coolant used. For a detailed investigation of organic matters pyrolysis-GC/MS is employed. The result shows that the main organic component is benzoic acid and furthermore, a small amount of acetophenone, benzene and phenyl group is detected. Based on the results of failure analysis performed, the scales on automotive thermostat housing appear due to the deposition of coolant components, followed by crevice corrosion, into gap between housing and rubber horse. New accelerated test methodology, which could mimic the scale formation and the crevice corrosion on thermostat housing, is developed considering the above results. In order to reproduce the real operating conditions, the accelerating factors, i.e. temperature and humidity, are changed and programmed. The reproducibility of the accelerated test proposed is confirmed after analyzing the scales obtained from the accelerated test.

A New Gas-Chromatograghic Method of Organic Elemental Analysis (가스크로마토그래피에 依한 微量元素分析)

  • Kim, You-Sun;Son, Youn-Soo;Choi, Q.Won
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.188-191
    • /
    • 1964
  • A new gas-chromatographic method for determining carbon and hydrogen in organic compounds has been developed. After sample combustion was performed in a regular analytical combustion tube with an internal oxidant (a mixture of silver oxide and manganese dioxide) under a helium flow, the water produced was converted to acetylene by passing through a calcium carbide tube. The carbon dioxide and acetylene were trapped by a molecular sieve 5A column at room temperature. The trapped gases were released under programmed temperature raise up to $340^{\circ}C$ and the released gases were passed through a silica gel column. The adsorption of $CO_2$ and $C_2H_2$ in the molecular sieve 5A trapping column were found to be quantitative and the silica gel column showed an excellent resolution of $CO_2$ and $C_2H_2$ for analytical purpose. The analytical results for various known compounds based on the out-put of the thermal conductivity cell calibrated for the amounts of carbon and hydrogen contents in benzoic acid, showed average errors ${\pm}0.5%$ and ${\pm}0.33%$ for carbon and hydrogen, respectively.

  • PDF

Thiol-dependent Redox Mechanisms in the Modification of ATP-Sensitive Potassium Channels in Rabbit Ventricular Myocytes

  • Han, Jin;Kim, Na-Ri;Cuong, Dang-Van;Kim, Chung-Hui;Kim, Eui-Yong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.1
    • /
    • pp.15-23
    • /
    • 2003
  • Cellular redox state is known to be perturbed during ischemia and that $Ca^{2+}$ and $K^2$ channels have been shown to have functional thiol groups. In this study, the properties of thiol redox modulation of the ATP-sensitive $K^2$ ($K_{ATP}$) channel were examined in rabbit ventricular myocytes. Rabbit ventricular myocytes were isolated using a Langendorff column for coronary perfusion and collagenase. Single-channel currents were measured in excised membrane patch configuration of patch-clamp technique. The thiol oxidizing agent 5,5'-dithio-bis-(2-nitro-benzoic acid) (DTNB) inhibited the channel activity, and the inhibitory effect of DTNB was reversed by dithiothreitol (disulfide reducing agent; DTT). DTT itself did not have any effect on the channel activity. However, in the patches excised from the metabolically compromised cells, DTT increased the channel activity. DTT had no effect on the inhibitory action by ATP, showing that thiol oxidation was not involved in the blocking mechanism of ATP. There were no statistical difference in the single channel conductance for the oxidized and reduced states of the channel. Analysis of the open and closed time distributions showed that DTNB had no effect on open and closed time distributions shorter than 4 ms. On the other hand, DTNB decreased the life time of bursts and increased the interburst interval. N-ethylmaleimide (NEM), a substance that reacts with thiol groups of cystein residues in proteins, induced irreversible closure of the channel. The thiol oxidizing agents (DTNB, NEM) inhibited of the $K_{ATP}$ channel only, when added to the cytoplasmic side. The results suggested that metabolism-induced changes in the thiol redox can also modulate $K_{ATP}$ channel activity and that a modulatory site of thiol redox may be located on the cytoplasmic side of the $K_{ATP}$ channel in rabbit ventricular myocytes.