• Title/Summary/Keyword: benzimidazole

Search Result 148, Processing Time 0.027 seconds

Dephosphorylation of Isopropyl phenyl-4-nitrophenylphosphinate (IPNPIN) onto 2-Alkylbenzimidazolide Anion in CTABr Micellar Solution (CTABr 미셀 용액속에서 2-Alkylbenzimidazole 음이온에 의해 추진되는 Isopropyl phenyl-4-nitrophenyl phosphinate(IPNPIN)의 탈인산화반응)

  • Kim, Jeung-Bea
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • This study is mainly focused on micellar effect of cetyltrimethyl ammonium bromide(CTABr) solution including alkylbenzimidazole(R-BI) on dephosphorylation of isopropyl-4-nitrophenylphosphinate(IPNPIN) in carbonate buffer(pH 10.7). The reactions of IPNPIN with R-$BI^{\ominus}$ are strongly catalyzed by the micelles of CTABr. Dephosphorylation of IPNPIN is accelerated by $BI^{\ominus}$ ion in $10^{-2}$ M carbonate buffer(pH 10.7) of $4{\times}10^{-3}$ M CTABr solution up to 89 times as compared with the reaction in carbonate buffer by no benzimidazole(BI) solution of $4{\times}10^{-3}$ M CTABr. The value of pseudo first order rate constant($k_{\Psi}$) of the reaction in CTABr solution reached a maximum rate constant increasing micelle concentration. Such rate maxima are typical of micellar catalyzed bimolecular reactions. The reaction mediated by R-$BI^{\ominus}$ in micellar solutions are obviously slower than those by $BI^{\ominus}$, and the reaction rate were decreased with increase of lengths of alkyl groups. It seems due to steric effect of alkyl groups of R-$BI^{\ominus}$ in Stern layer of micellar solution. The surfactant reagent, CTABr, strongly catalyzes the reaction of IPNPIN with R-BI and its anion(R-$BI^{\ominus}$) in carbonate buffer(pH 10.7). For example, $4{\times}10^{-3}$ M CTABr in $1{\times}10^{-4}$ M BI solution increase the rate constant($k_{\Psi}=98.5{\times}10^{-3}\;sec^{-1}$) of the dephosphorylation by a factor ca.25, when compared with reaction($k_{\Psi}=3.9{\times}10^{-4}\;sec^{-1}$) in $1{\times}10^{-4}$ M BI solution(without CTABr). And no CTABr solution, in $1{\times}10^{-4}$ M BI solution increase the rate constant($k_{\Psi}=3.9{\times}10^{-4}\;sec^{-1}$) of the dephosphorylation by a factor ca.39, when compared with reaction ($k_{\Psi}=1.0{\times}10^{-5}\;sec^{-1}$) in water solution(without BI). This predicts that the reactivities of R-$BI^{\ominus}$ in the micellar pseudophase are much smaller than that of $BI^{\ominus}$. Due to the hydrophobicity and steric effect of alkyl group substituents, these groups would penetrate into the core of the micelle for stabilization by van der Waals interaction with long alkyl groups of CTABr.

Effects of carbendazim on DNA, gene and chromosome (살균제 carbendazim이 DNA, 유전자 및 염색체에 미치는 영향)

  • Lee, Je-Bong;Sung, Pil-Nam;Jeong, Mi-Hye;Shin, Jin-Sup;Kang, Kyu-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.4
    • /
    • pp.288-298
    • /
    • 2004
  • Benzimidazole pesticide carbendazim that is effective against a wide range of fungal plant pathogens is a protective, eradicant, and systemic fungicide. For genetic toxicity evaluation of carbendazim on DNA, genes and chromosome, were investigated with chromosome aberration, bacterial reverse mutation, micronucleus test in mouse born marrow and DNA damage assay by single cell microgel electrophoresis. Substitution and frameshift mutation were not induce at variable concentration of carbendazim on Ames test with or without rat liver microsomal activation. For the result of chromosome aberration test, numerical changes of chromosome were detected at the concentrations higher than $4.0{\mu}g/m{\ell}$, but structural aberration was not induced. Positive control, Mitomycin-C and captafol made a structural aberration, but numerical change of chromosome did not appear. In the micronucleus test for mouse born marrow, carbendazim was negative, but was weak positive in DNA damage assay by single cell microgel electrophoresis because of increased DNA moving length of 20% to control.

Changes in Sensitivity Levels of Botrytis spp. Population Isolated from Lily to Fungicides and Control under Field Condition (나리에서 분리한 잎마름병균의 살균제에 대한 감수성 변화와 포장 방제)

  • Hahm, Soosang;Kyeong, Kicheon;Kim, Byungryun;Han, Kwangseop;Choi, Jongjin;Nam, Yunkyu;Yu, Seunghun
    • Research in Plant Disease
    • /
    • v.19 no.1
    • /
    • pp.7-11
    • /
    • 2013
  • Forty eight isolates of Botrytis elliptica and 23 isolates of B. cinerea from several locations in Korea were tested for resistance to fungicides used in the farmer's fields. Isolation frequency of B. elliptica having $EC_{50}$ (effective concentration of 50%) value $500-1000{\mu}g/ml$ to benomyl and mancozeb appeared highly, suggesting that the two fungicides are not effective in controlling leaf blight of lily in the field. The isolates were tested for resistance to fungicides procymidone and iprodione which were most commonly used in the farmer's fields. The rates of $EC_{50}$ value $5-50{\mu}g/ml$ to procymidome and iprodione were 93.7% and 100%, respectively, and those of $0-0.1{\mu}g/ml$ to diethofencarb+carbendazim and fludioxonil were 98.0% and 93.8%, respectively. In the rain-protected cultivation, control of leaf blight of lily was the most effective when iprodine, diethofencarb+carbendazim, and fludioxonil were sprayed alternately four times during the growing season.

Actinomycin D Induces Phosphorylation of STAT3 through Down-Regulation of SOCS3 in Renal Cancer Cells (신장암 세포주에서 actinomycin D에 의한 SOCS3 발현 감소를 통한 STAT3 활성화)

  • Woo, Seon-Min;Park, Eun-Jung;Kwon, Taeg-Kyu
    • Journal of Life Science
    • /
    • v.21 no.1
    • /
    • pp.141-145
    • /
    • 2011
  • Actinomycin D is a natural antibiotic that is used in anti-cancer chemotherapy and is known as a transcription inhibitor. Interestingly, actinomycin D induces phosphorylation of signal transducers and activators of transcription 3 (STAT3) in renal cancer Caki cells. In this study, we examined the molecular mechanism of actinomycin D-induced STAT3 phosphorylation. Treatment with actinomycin D induced phosphorylation of STAT3 (Tyr705) in a dose- and time-dependent manner. However, actinomycin D did not induce phosphorylation of STAT3 (Ser727), STAT1 (Tyr701) and STAT1 (Ser727). Moreover, actinomycin D-induced STAT3 phosphorylation was caused by decreased protein and mRNA levels of SOCS3, but not by JAK2 and SHP-1. In addition, other transcription inhibitor (5,6-dichloro-1-b-D-ribofuranosyl benzimidazole; DRB) also induced phosphorylation of STAT3 (Tyr705). Taken together, the present study demonstrates that transcriptional inhibitors (actinomycin D and DRB) induce phosphorylation of STAT3 (Tyr705) in Caki cells by down-regulation of SOCS3.

The Effect of Fungicide Carbendazim on Hepatic detoxication systems of rat (살균제 carbendazim이 랫드 간 해독체계에 미치는 영향)

  • Lee, Je-Bong;Shin, Jin-Sup;Jeong, Mi-Hye;Park, Yeon-Ki;Kang, Kyu-Young
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.338-346
    • /
    • 2005
  • Serum alanine aminotransferase(ALT), aspartate aminotransferase (AST), hepatic glutathione, glutathione S-transferase(GST), cytochrome P450 and cytochrome P450 reductase activity were measured to investigate the effects of hepatic detoxication system and metabolic activities of carbendazim in Sprague Dawley(S.D.) male rat at dose levels of 375, 750 or 1,500 mg/kg body weight. Serum alanine aminotransferase(ALT) and aspartate aminotransferase(AST) activities were slightly increased in all test groups after 120 minutes of administration. Glutathione was increased about 20% at high and medium dose level within 120 minutes after administration, while activity of glutathione S-transferase was decreased $36{\sim}50%$. However, the enzyme activity was recovered from all test groups after 240 minutes of administration. Cytochrome P450 and activity of cytochrome P450 reductase were decreased $25{\sim}50%$ until 120 minutes after administration, but recovered after 240 minutes.

Degradation effect of carbendazim in soil by application with the microbial agent, Rhodococcus sp. 3-2 (미생물제(Rhodococcus sp. 3-2) 처리에 따른 토양 중 카벤다짐의 분해효과)

  • Yeon, Jehyeong;Kim, Hyeon-su;Ahn, Jae-Hyung;Han, Gui Hwan;Oh, Young Goun;Cho, Il Kyu;Park, In-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.322-329
    • /
    • 2021
  • BACKGROUND: The fungicide of benomyl, a benzimidazole group, has been commonly used for pesticides against fungal diseases in the world. However, benomyl is rapidly hydrolyzed in the environment after using to control plant diseases and has adverse effects by generating carbendazim, which is toxic to plants, humans, and the environment. METHODS AND RESULTS: In this study, the decomposition effect of carbendazim, a degradation product of benomyl was conducted in pot and field after making a prototype of benomyl-degrading microbial agent (BDMA). We found that the carbendazim-degrading microbial agent (CDMA) (105, 106, and 107 cfu/g soil) decomposed carbendazim by 50% or more in all the treatments, compared to the untreated control in the pot tests after four weeks. The effect of 100% decomposition of carbendazim was observed at 7 days after treatment, when the prototype of BDMA was apllied at 10-folds dilution in the field. The decomposition effect at more than 60% and plant growth promoting effect were observed after 7 days of the treatment, compared with the untreated group in the second field experiment,treated with commercially available concentrations of 500-folds and 1,000-folds. CONCLUSION(S): These results might represent that the BDMA would decompose carbendazim effectively, a decomposition product of the fungicide benomyl, remaining in agricultural area, and it could be utilized practically by using a low dilution rate.

Mass Cultivation of Rhodococcus sp. 3-2, a Carbendazim-Degrading Microorganism, and Development of Microbial Agents (카벤다짐 분해 미생물인 Rhodococcus sp. 3-2의 대량 배양 및 미생물 제제 개발)

  • Jun-Kyung Park;Seonghun Im;Jeong Won Kim;Jung-Hwan Ji;Kong-Min Kim;Haeseong Park;Yeong-Seok Yoon;Hang-Yeon Weon;Gui Hwan Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.259-268
    • /
    • 2023
  • Rhodococcus sp. 3-2 strain has been reported to degrade benzimidazole-based pesticides, such as benomyl and carbendazim. Therefore, this study aimed to optimize culture medium composition and culture conditions to achieve cost-effective and efficient large-scale production of the Rhodococcus sp. 3-2 strain. The study identified that the optimal media composition for mass culture comprised 0.5% glucose, 0.5% yeast extract, 0.15% NaCl, 0.5% K2HPO4, 0.5% sodium succinate, and 0.1% MgSO4. Additionally, a microbial agent was developed using a 1.5-ton fermenter, with skim milk (20%), monosodium glutamate (15%), and vitamin C (2%) as key components. The storage stability of the microbial agent has been confirmed, with advantages of low temperature conservation, which helps to sustain efficacy for at least six months. We also assessed the benomyl degradation activity of the microbial agent within field soil. The results revealed an over 90% degradation rate when the concentration of viable cells exceeded 2.65 × 106 CFU/g after a minimum of five weeks had elapsed. Based on these findings, Rhodococcus sp. 3-2 strain can be considered a cost-effective microbial agent with diverse agricultural applications.

Studies on Sclerotium rolfsii Sacc. isolated from Magnolia kobus DC. in Korea (목련(Magnolia kobus DC.)에서 분리한 흰비단병균(Sclerotium rolfsii Sacc.)에 관한 연구)

  • Kim Kichung
    • Korean journal of applied entomology
    • /
    • v.13 no.3 s.20
    • /
    • pp.105-133
    • /
    • 1974
  • The present study is an attempt to solve the basic problems involved in the control of the Sclerotium disease. The biologic stranis of Sclerotium rolfsii Sacc., pathogen of Sclerotium disease of Magnolia kobus, were differentiated, and the effects of vitamins, various nitrogen and carbon sources on its mycelial growth and sclerotial production have been investigated. In addition the relationship between the cultural filtrate of Penicillium sp. and the growth of Sclerotium rolfsii, the tolerance of its mycelia or sclerotia to moist heat or drought and to Benlate (methyl-(butylcarbamoy 1)-2-benzimidazole carbamate), Tachigaren (3-hydroxy-5-methylisoxazole) and other chemicals were also clarified. The results are summarizee as follows: 1. There were two biologic strains, Type-l and Type-2 among isolates. They differed from each other in the mode of growth and colonial appearance on the media, aversion phenomenon and in their pathogenicity. These two types had similar pathogenicity to the Magnolia kobus and Robinia pseudoacasia, but behaved somewhat differently to the soybaen and cucumber, the Type-l being more virulent. 2. Except potassium nitrite, sodium nitrite and glycine, all of the 12 nitrogen sources tested were utilized for the mycelial growth and sclerotial production of this fungus when 10r/l of thiamine hydrochloride was added in the culture solution. Considering the forms of nitrogen, ammonium nitrogen was more available than nitrate nitrogen for the growth of mycelia, but nitrate nitrogen was better for sclerotia formation. Organic nitrogen showed different availabilities according to compounds used. While nitrite nitrogen was unavailable for both mycelial growth and sclerotial formation whether thiamine hydrochlioride was added or not. 3. Seven kinds of carbon sources examined were not effective in general, as long as thiamine hydrochloride was not added. When thiamine hydrochloride was added, glucose and saccharose exhibited mycelial growth, while rnaltose and soluble starch gave lesser, and xylose, lactose, and glycine showed no effect at all,. In the sclerotial production, all the tested carbon sources, except lactose, were effective, and glucose, maltose, saccharose, and soluble starch gave better results. 4. At the same level of nitrogen, the amount of mycelial growth increased as more carbon Sources were applied but decreased with the increase of nitrogen above 0.5g/1. The amount of sclerotial production decreased wi th the increase of carbon sources. 5. Sclerotium rolfsii was thiamine-defficient and required thiamine 20r/l for maximun growth of mycelia. At a higher concentration of more than 20r/l, however, mycelial growth decreased as the concentration increased, and was inhibited at l50r/l to such a degree of thiamine-free. 6. The effect of the nitrogen sources on the mycelial growth under the presence of thiamine were recognized in the decreasing order of $NH_4NO_3,\;(NH_4)_2SO_4,\;asparagine,\;KNO_3$, and their effects on the sclerotial production in the order of $KNO_3,\;NH_4NO_3,\;asparagine,\;(NH_4)_2SO_4$. The optimum concentration of thiamine was about 12r/l in $KNO_3$ and about 16r/l in asparagine for the growth of mycelia; about 8r/l in $KNO_3$ and $NH_4NO_3$, and 16r/l in asparagine for the production of sclerotia. 7. After the fungus started to grow, the pH value of cultural filtrate rapidly dropped to about 3.5. Hereafter, its rate slowed down as the growth amount increased and did not depreciated below pH2.2. 8. The role of thiamine in the growth of the organism was vital. If thiamine was not added, the combination of biotin, pyridoxine, and inositol did not show any effects on the growth of the organism at all. Equivalent or better mycelial growth was recognized in the combination of thiamine+pyridoxine, thiamine+inositol, thiamine+biotin+pyridoxine, and thiamine+biotin+pyridoxine+inositol, as compared with thiamine alone. In the combinations of thiamine+biotin and thiamine+biotin+inositol, mycelial growth was inhibited. Sclerotial production in dry weight increased more in these combinations than in the medium of thiamine alone. 9. The stimulating effects of the Penicillium cultural filtrate on the mycelial growth was noticed. It increased linearly with the increase of filtrate concentration up to 6-15 ml/50ml basal medium solution. 10. $NH_4NO_3$. as a nitrogen source for mycelial growth was more effective than asparasine regardless of the concentration of cultural filtrate. 11. In the series of fractionations of the cultural filtrate, mycelial growth occured in unvolatile, ether insoluble cation-adsorbed or anion-unadsorbed substance fractions among the fractions of volatile, unvolatile acids, ether soluble organic acids, ether insoluble, cation-adsorbed, cation-unadsorbed, anion-adsorbed and anion-unadsorbed. and anion-un-adsorbed substance tested. Sclerotia were produced only in cation-adsorbed fraction. 12. According to the above results, it was assumed that substances for the mycelial growth and sclerotial formation and inhibitor of sclerotial formation were include::! in cultural filtrate and they were quite different from each other. I was further assumed that the former two substances are un volatile, ether insotuble, and adsorbed to cation-exchange resin, but not adsorbed to anion, whereas the latter is unvolatile, ether insoluble, and not adsorbed to cation or anion-exchange resin. 13. Seven amino acids-aspartic acid, cystine, glysine, histidine, Iycine, tyrosine and dinitroaniline-were detected in the fractions adsorbed to cation-exchange resin by applying the paper chromatography improved with DNP-amino acids. 14. Mycelial growth or sclerotial production was not stimulated significantly by separate or combined application of glutamic acid, aspartic acid, cystine, histidine, and glysine. Tyrosine gave the stimulating effect when applied .alone and when combined with other amino acids in some cases. 15. The tolerance of sclerotia to moist heat varied according to their water content, that was, the dried sclerotia are more tolerant than wet ones. The sclerotia harvested directly from the media, both Type-1 and Type-2, lost viability within 5 minutes at $52^{\circ}C$. Sclerotia dried for 155 days at$26^{\circ}C$ had more tolerance: sclerotia of Type-l were killed in 15 mins. at $52^{\circ}C$ and in 5 mins. at $57^{\circ}C$, and sclerotia of Type-2 were killed in 10 mins. both at $52^{\circ}C$ or $57^{\circ}C$. 16. Cultural sclerotia of both strains maintained good germinability for 132 days at$26^{\circ}C$. Natural sclerotia of them stored for 283 days under air dry condition still had good germinability, even for 443 days: type-l and type-2 maintained $20\%$ and $26.9\%$ germinability, respectively. 17. The tolerance to low temperature increased in the order of mycelia, felts and sclerotia. Mycelia completely lost the ability to grow within 1 week at $7-8^{\circ}C$> below zero, while mycelial felts still maintained the viability after .3 weeks at $7-20^{\circ}C$ below zero, and sclerotia were even more tolerant. 18. Sclerotia of type-l and type-2 were killed when dipped into the $0.05\%$ solution of mercury chloride for 180 mins. and 240 mins. respectively: and in the $0.1\%$ solution, Type-l for 60 mins. and Type-2 for 30 mins. In the $0.125\%$ uspulun solution, Type-l sclerotia were killed in 180 mins., and those of Type-2 were killed for 90 mins. in the$0.125\%$solution. Dipping into the $5\%$ copper sulphate solution or $0.2\%$ solution of Ceresan lime or Mercron for 240 mins. failed to kill sclerotia of either Type-l or Type-2. 19. Inhibitory effect on mycelial growth of Benlate or Tachi-garen in the liquid culture increased as the concentration increased. 6 days after application, obvious inhibitory effects were found in all treatments except Benlate 0.5ppm; but after 12 days, distingushed diflerences were shown among the different concentrations. As compared with the control, mycelial growth was inhibited by $66\%$ at 0.5ppm and by $92\%$ at 2.0ppm of Benlate, and by$54\%$ at 1ppm and about $77\%$ at 1.5ppm or 2.0ppm of Tachigaren. The mycelial growth was inhibited completely at 500ppm of both fungicides, and the formation of sclerotia was checked at 1,000ppm of Benlate ant at 500ppm or 1,000ppm of Tachigaren. 20. Consumptions of glucose or ammonium nitrogen in the culture solution usually increased with the increment of mycelial growth, but when Benlate or Tachigaren were applied, consumptions of glucose or ammonium nitrogen were inhibited with the increment of concentration of the fungicides. At the low concentrations of Benlate (0.5ppm or 1ppm), however, ammonium nitrogen consumption was higher than that of the ontrol. 21. The amount of mycelia produced by consuming 1mg of glucose or ammonium nitrogen in the culture solution was lowered markedly by Benlate or Tachigaren. Such effects were the severest on the third day after their treatment in all concentrations, and then gradually recovered with the progress of time. 22. In the sand culture, mycelial growth was not inhibited. It was indirectly estimated by the amount of $CO_2$ evolved at any concentrations, except in the Tachigaren 100mg/g sand in which mycelial growth was inhibited significantly. Sclerotial production was completely depressed in the 10mg/g sand of Benlate or Tachigaren. 23. There was no visible inhibitory effect on the germination of sclerotia when the sclerotia were dipped in the solution 0.1, 1.0, 100, 1.000ppm of Benlate or Tachigaren for 10 minutes or even 20 minutes.

  • PDF