• Title/Summary/Keyword: bentonite content

Search Result 156, Processing Time 0.032 seconds

Study on physical characteristics of grouts for backfilling ground heat exchanger (수직 밀폐형 지중 열교환기용 뒤채움재의 물리적 특성 연구)

  • Lee, Chul-Ho;Gil, Hu-Jeong;Choi, Hang-Seok;Choi, Hyo-Pum;Woo, Sang-Baik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.533-544
    • /
    • 2008
  • To obtain the physical properties of grout materials, that is the thermal conductivity and viscosity, which are used for backfilling ground heat exchangers, nine bentonite grouts and cement grouts being adapted in the United State have been considered in this study. The bentonite grouts show that the thermal conductivity and viscosity increase with the content of bentonite or filler (silica sand). The saturated cement grouts appear to possess much higher thermal conductivity than the saturated bentonite grouts, and the reduction of thermal conductivity in the cement grouts after drying specimens is less than the case of the bentonite grouts. To investigate the performance of cement grouts, fifteen samples were prepared by varying the water/cement ratio and the amount of sand and bentonite added into the cement mortar. Maintaining the moisture content of grouts is a crucial factor in enhancing the efficiency of ground heat exchangers.

  • PDF

Effect of Bentonite on the Mechanical Properties of ABS Resin (Bentonite가 ABS 수지의 기계적 물성에 미치는 영향)

  • Don, Yoon-Seung;Shim, Mi-Ja;Kim, Sang-Wook
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.981-989
    • /
    • 1994
  • For the development of new material used bentonite in ceramic/organic material composite, ABS(acrylonitrile-butadiene-styrene) material was used as a matrix polymer and a series of bentonite was blended together. This bentonite, filler like talc or mica for plastic material, was used since natural bentonite(Ca type) is easily obtainable in Korea, Na-bentonite changed from natural bentonite by $Na_2CO_3$ based on the specified compositions, changes in the static and dynamic mechanical properties. It was discovered that the increased content of natural and Na- bentonite results in higher modulus with reduced impact strength. And Rockwell hardness was constant. And Na- bentonite filled polymer showed improvement in impact strength and lower in modulus as the natural bentonite filled polymer. The storage modulus(E') of Na- bentonite filled ABS resin was higher than that of Ca- bentonite filled ABS resin, while higher temperature, storage modulus(E') decreased. At higher frequency, tan ${\delta}$ peak was shifted at high temperature.

  • PDF

A Correlation to Predict the Thermal Conductivity of Buffer and Backfill Material for a High-Level Waste Repository (고준위폐기물처분장 완충재 및 뒷채움재의 열전도도 예측을 위한 관계식)

  • Cho, Won-Jin;Lee, Jae-Owan;Kwon, Sang-Ki
    • Tunnel and Underground Space
    • /
    • v.20 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • In the present design concept of a high-level waste repository, the bentonite and bentonite-sand mixture are considered as the buffer and backfill material. For the Kyungju bentonite which is a candidate material, the thermal conductivities of compacted bentonite and bentonite-sand mixture were measured. A correlation has been proposed to predict the thermal conductivity of the Kyungju bentonite and the bentonite-sand mixture as a function of the dry density, the water content and the sand fraction. The proposed correlation can predict the thermal conductivity with a difference less than 10% under the experimental conditions.

Numerical Simulations of the Moisture Movement in Unsaturated Bentonite Under a Thermal Gradient

  • Park, J.W.;K. Chang;Kim, C.L.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.62-72
    • /
    • 2001
  • The one-dimensional finite element program was developed to analyze the coupled behavior of heat, moisture, and air transfer in unsaturated porous media. By using this program, the simulation results were compared with those from the laboratory infiltration tests under isothermal condition and temperature gradient condition, respectively. The discrepancy of water uptake was found in the upper region of a bentonite sample under isothermal condition between numerical simulation and laboratory experiment. This indicated that air pressure was built up in the bentonite sample which could retard the infiltration velocity of liquid. In order to consider the swelling phenomena of compacted bentonite which cause the discrepancy of the distribution of water content and temperature, swelling and shrinkage factors were incorporated into the finite element formulation. It was found that these factors could be effective to represent the moisture diffusivity and unsaturated hydraulic conductivity due to volume change of bentonite sample.

  • PDF

Measurements of the Thermal Conductivity of Domestic Bentonite for Improving the Physical Performance of Buffer (완충재의 물리적 성능향상을 위한 국내 벤토나이트의 열전도도 측정실험)

  • Kim, Geon-Young;Kim, Seung-Soo;Choi, Jong-Won;Park, Seong-Wan;Bae, Dae-Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.2 s.48
    • /
    • pp.89-98
    • /
    • 2006
  • The thermal conductivities of bentonite blocks with various dry densities (1.6 and $1.8g/cm^3$), water contents (5, 9.4, 15, 20 wt%) and sand contents (0, 10, 20, 30 wt%) were measured in order to investigate the improvement in physical performance of buffer as an engineered barrier. The raw material was domestic bentonite from Oksan mine located in Gyeongju city. The increase in water content was most effective for improving the thermal conductivity. Especiallly, the bentonite blocks with more than 15 wt% of water content showed more than 1.0 W/mK values of thermal conductivity regardless of their dry densities and sand contents. Therefore, if the domestic Oksan bentonite is used as a buffer material, we can suggest that the manufacture of bentonite block having dry density of $1.6g/cm^3$, sand content of $10{\sim}30$ wt% and water content of 15 wt% will be most effective considering the easiness of a manufacturing of bentonite block and the efficiency of an increase in the thermal conductivity.

A Study on the High Temperature Properties (Compressive Strength, Expansion) of Synthetic Sand using Domestic Silica Sand (Mooryang Silica Sand) (국내규사(國內硅砂)를 사용(使用)한 합성사(合成砂)의 고온성질(高溫性質) (압축강도(壓縮强度), 팽장(膨張)) 에 관(關)한 연구(硏究))

  • Yun, Byung-Guk;Lee, Kye-Wan
    • Journal of Korea Foundry Society
    • /
    • v.2 no.4
    • /
    • pp.2-8
    • /
    • 1982
  • The behavior of sand and mold at high temperatures was generally agreed to importantly affect the quality of castings made. By changing water content through 2,4,6 and 8%, and bentonite content through 5,7,9 and 11%, specimens have been made according to the respective composition. Specimens have been subjected to hot compressive strength and thermal expansion at 400, 600, 800 and $1000^{\circ}C$ respectively. The results obtained were as follows ; 1. At each temperature, thermal expansion decreased and hot compressive strength increased with the increase in water content. 2. After thermal expansion was peaked at approximately $1000^{\circ}C$ the contraction and maximum hot compressive strength appeared. 3. At each temperature, maximum hot compressive strength appeared 2%, 4,6% and 8% water content for 7%, 9% and 11% bentonite content respectively. 4. When 2% $H_2O$ was added, though bentonite content was increased, hot compressive strength did not rarely change. 5. Until the thermal expansion was completed the required time was 15-18 minutes at $400^{\circ}C$ and $600^{\circ}C$, and 10-13 minutes at $800^{\circ}C$. At $1000^{\circ}C$, the required time was 7-9 minutes in order to gain the maximum expansion, after that, contraction proceeded during 3-4 minutes before expansion was completed.

  • PDF

A study on the Evaluation of Permeability and Structure for Calcium Bentonite-Sand Mixtures (칼슘 벤토나이트-모래 혼합차수재의 투수 및 구조 특성에 관한 연구)

  • Yun, Seong Yeol;An, Hyeon Kyu;Oh, Minah;Lee, Jai-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.2
    • /
    • pp.1-10
    • /
    • 2019
  • This study was intended to evaluate the water permeability and structure for calcium bentonite-sand mixtures to utilize calcium bentonite as a liner. This study conducted physico-chemical properties tests, compaction tests, permeability test and Scanning Electron Microscopy analysis (SEM) analysis. It was found the higher the ratio of calcium bentonite, the lower the dry density with coefficient of permeability, and the higher the optimum moisture content. In particular, SEM analysis was found the higher the ratio of calcium bentonite, the higher the area of the montmorillonite particles. In conclusion, the optimum coefficient of permeability that finds the landfill liner condition (must be less than $1{\times}10^{-7}cm/sec$) was obtained when the ratio of calcium bentonite was 40% or higher. These findings may improve the understanding of the calcium bentonite as a liner. Calcium bentonite shows a similar permeability to sodium bentonite 7% when mixed at 40% or more. Therefore, it is considered that calcium bentonite can be utilized as a liner.

Evaluation of the Effects of a Combination of Silicate Minerals in Duck Diets on Growth Performance and Litter Quality

  • Chung, Tae-Ho
    • Journal of Environmental Science International
    • /
    • v.27 no.10
    • /
    • pp.933-936
    • /
    • 2018
  • An experiment was conducted to evaluate the efficacy of a mixture of bentonite and illite as feed additives on the growth performance and litter quality of 90 Pekin ducks. The ducks were individually weighed and randomly divided into two treatments (control and 1% combination of silicate minerals), with three replicate pens per treatment, and 15 ducks per pen. Growth performance was not significantly affected (p>0.05) by the combination of bentonite and illite, but a trend of increased growth performance was observed in the control groups. Total nitrogen content and pH in the litter decreased following supplementation with the combination of bentonite and illite (p<0.05) when compared with the control group. This data indicates that the dietary supplementation with the combination of bentonite and illite (1% level) has no positive effect on the growth performance and litter quality of Pekin ducks.

Strength Characteristics of Soil-Bentonite Mixture (Soil-Bentonite 혼합토의 강도 특성)

  • Jin, Guang-Ri;Shin, Dong-Hoon;Im, Eun-Sang;Kim, Ki-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.844-851
    • /
    • 2009
  • A soil mixture with low permeability and bentonite as an additive has been highly utilized as a cutoff material in landfills, banks, and dams. Even though it is anticipated that the water can seep through shear failures in the filter layer due to external loads and embankment loads during construction, usually only the coefficient of permeability of the soil mixture is considered rather than the changes of strength from the different amounts of additives. Therefore, the amount of bentonite was changed between 0%~4% in the soil mixture of the bed material to conduct a series of unconfined compressive strength, tensile strength, and shear strength tests on a specimen in order to study the characteristics of the strength. In the result, the unconfined compressive and tensile strength were increased along with the increased amount of bentonite in the low water content; however, the tensile strength in the consolidated-drained shear test generally showed similar values without significant changes.

  • PDF

Preparation and Characterization of Poly(vinyl alcohol)/bentonite Nanocomposites Films with Modified Bentonites (개질된 벤토나이트가 혼입된 폴리비닐알코올/벤토나이트 나노복합 필름의 제조 및 특성분석)

  • Ji, Byung Chul;Yang, Seong Baek;Lee, Jungeon;Park, Jae Min;Han, Myung-Dong;Kim, Ui Ju;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.33 no.3
    • /
    • pp.161-167
    • /
    • 2021
  • Polymer nanocomposite is considered a great alternative to solve the limitations that exist in a simple combination material, as well as to produce multifunctional and high-performance results. In this research, PVA/bentonite nanocomposite films were prepared based on the presence or absence of modification of nano-clay(bentonite) a SUPERGEL® product, modification conditions and content, and the structural variation of the prepared PVA/bentonite nanocomposite films were examined. The effect of variations in the internal structure of the nanocomposite on mechanical and thermal properties was investigated. As a result of evaluating the thermal characteristics of the PVA/bentonite nanocomposite film based on the concentration of the modified bentonite, it was verified that the thermal characteristics and stability were improved because of interaction between the polymer and the modified nano-clay.