Browse > Article

A Correlation to Predict the Thermal Conductivity of Buffer and Backfill Material for a High-Level Waste Repository  

Cho, Won-Jin (한국원자력연구원 방사성폐기물기술개발부)
Lee, Jae-Owan (한국원자력연구원 방사성폐기물기술개발부)
Kwon, Sang-Ki (한국원자력연구원 방사성폐기물기술개발부)
Publication Information
Tunnel and Underground Space / v.20, no.4, 2010 , pp. 284-291 More about this Journal
Abstract
In the present design concept of a high-level waste repository, the bentonite and bentonite-sand mixture are considered as the buffer and backfill material. For the Kyungju bentonite which is a candidate material, the thermal conductivities of compacted bentonite and bentonite-sand mixture were measured. A correlation has been proposed to predict the thermal conductivity of the Kyungju bentonite and the bentonite-sand mixture as a function of the dry density, the water content and the sand fraction. The proposed correlation can predict the thermal conductivity with a difference less than 10% under the experimental conditions.
Keywords
Buffer; Backfill; Thermal conductivity; Bentonite; Bentonite-sand mixture;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Borgesson, L., Fredrikson, A. and Johannesson, L.-E., 1994, Heat conductivity of buffer materials, SKB Technical Report 94-29.
2 Radhakrishna, H. S., 1984, Thermal properties of claybased buffer materials for a nuclear fuel waste disposal vault, Atomic Energy of Canada Limited Report, AECL-7805.
3 JNC, 1999, H12 Project to establish technical basis for HLW disposal in Japan, Supporting Report 2, Japan Nuclear Cycle Development Institute, Japan.
4 최희주 등, 2008, 한국형 고준위폐기물처분시스템, 기술보고서, KAERI/TR-3563 /2008, 한국원자력연구원.
5 Simmons, G. R. and Baumgartner, P., 1994, The disposal of Canada's nuclear fuel waste: engineering for a disposal facility, Atomic Energy of Canada Limited Report, AECL- 10715, COG-93-5.
6 Bowles, J. E., 1984, Physical and geotechnical properties of soils, 2nd Ed., McGraw-Hill Book Co.
7 Knutsson, S., 1983, On the thermal conductivity and thermal diffusivity of highly compacted bentonite, SKB Technical Report 83-72.
8 American Society for Testing and Materials, 1991, Annual Book of ASTM Standards. Vol. 04.08.
9 김건영, 김승수, 최종원, 박성원, 배대석, 2006, 완충재의 물리적 성능 향상을 위한 국내 벤토나이트의 열전도도 측정 실험, 한국광물학회지, 19, 89-98.   과학기술학회마을
10 조원진, 이재완, 권상기, 2008, 압축 벤토나이트 및 벤토나이트-모래 혼합물의 열전도도, 방사성폐기물학회지, 6, 101-109.   과학기술학회마을
11 조원진, 이재완, 강철형, 전관식, 1999, 고준위폐기물처분장 완충재용 국산 벤토나이트 및 벤토나이트-모래 혼합물의 물리화학적, 광물학적 및 역학적특성, 기술보고서, KAERI/ TR-1388/99, 한국원자력연구소
12 Cho, W. J., Lee, J. O., Hahn, P. S. and Chun, K. S., 1996, Preliminary Performance Assesment of the Engineered Barriers for a Low-and Intermediate-level Radioactive Waste Repository, Nuclear Technology, 116, 115.   DOI