• Title/Summary/Keyword: beneficial microbe

Search Result 16, Processing Time 0.021 seconds

Agathobaculum butyriciproducens Shows Neuroprotective Effects in a 6-OHDA-Induced Mouse Model of Parkinson's Disease

  • Lee, Da Woon;Ryu, Young-Kyoung;Chang, Dong-Ho;Park, Hye-Yeon;Go, Jun;Maeng, So-Young;Hwang, Dae Youn;Kim, Byoung-Chan;Lee, Chul-Ho;Kim, Kyoung-Shim
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.9
    • /
    • pp.1168-1177
    • /
    • 2022
  • Parkinson's disease (PD) is the second-most prevalent neurodegenerative disease and is characterized by dopaminergic neuronal death in the midbrain. Recently, the association between alterations in PD pathology and the gut microbiota has been explored. Microbiota-targeted interventions have been suggested as a novel therapeutic approach for PD. Agathobaculum butyriciproducens SR79T (SR79) is an anaerobic bacterium. Previously, we showed that SR79 treatment induced cognitive improvement and reduced Alzheimer's disease pathologies in a mouse model. In this study, we hypothesized that SR79 treatment may have beneficial effects on PD pathology. To investigate the therapeutic effects of SR79 on PD, 6-hydroxydopamine (6-OHDA)-induced mouse models were used. D-Amphetamine sulfate (d-AMPH)-induced behavioral rotations and dopaminergic cell death were analyzed in unilateral 6-OHDA-lesioned mice. Treatment with SR79 significantly decreased ipsilateral rotations induced by d-AMPH. Moreover, SR79 treatment markedly activated the AKT/GSK3β signaling pathway in the striatum. In addition, SR79 treatment affected the Nrf2/ARE signaling pathway and its downstream target genes in the striatum of 6-OHDA-lesioned mice. Our findings suggest a protective role of SR79 in 6-OHDA-induced toxicity by regulating the AKT/Nrf2/ARE signaling pathway and astrocyte activation. Thus, SR79 may be a potential microbe-based intervention and therapeutic strategy for PD.

Effects of alfalfa flavonoids on the production performance, immune system, and ruminal fermentation of dairy cows

  • Zhan, Jinshun;Liu, Mingmei;Su, Xiaoshuang;Zhan, Kang;Zhang, Chungang;Zhao, Guoqi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.10
    • /
    • pp.1416-1424
    • /
    • 2017
  • Objective: The objective of this study was to examine the effects of alfalfa flavonoids on the production performance, immunity, and ruminal fermentation of dairy cows. Methods: The experiments employed four primiparous Holstein cows fitted with ruminal cannulas, and used a $4{\times}4$ Latin square design. Cattle were fed total mixed ration supplemented with 0 (control group, Con), 20, 60, or 100 mg of alfalfa flavonoids extract (AFE) per kg of dairy cow body weight (BW). Results: The feed intake of the group receiving 60 mg/kg BW of AFE were significantly higher (p<0.05) than that of the group receiving 100 mg/kg BW. Milk yields and the fat, protein and lactose of milk were unaffected by AFE, while the total solids content of milk reduced (p = 0.05) linearly as AFE supplementation was increased. The somatic cell count of milk in group receiving 60 mg/kg BW of AFE was significantly lower (p<0.05) than that of the control group. Apparent total-tract digestibility of neutral detergent fiber and crude protein showed a tendency to increase (0.05<$p{\leq}0.10$) with ingestion of AFE. Methane dicarboxylic aldehyde concentration decreased (p = 0.03) linearly, whereas superoxide dismutase activity showed a tendency to increase (p = 0.10) quadratically, with increasing levels of AFE supplementation. The lymphocyte count and the proportion of lymphocytes decreased (p = 0.03) linearly, whereas the proportion of neutrophil granulocytes increased (p = 0.01) linearly with increasing levels of dietary AFE supplementation. The valeric acid/total volatile fatty acid (TVFA) ratio was increased (p = 0.01) linearly with increasing of the level of AFE supplementation, the other ruminal fermentation parameters were not affected by AFE supplementation. Relative levels of the rumen microbe Ruminococcus flavefaciens tended to decrease (p = 0.09) quadratically, whereas those of Butyrivibrio fibrisolvens showed a tendency to increase (p = 0.07) quadratically in response to AFE supplementation. Conclusion: The results of this study demonstrate that AFE supplementation can alter composition of milk, and may also have an increase tendency of nutrient digestion by regulating populations of microbes in the rumen, improve antioxidant properties by increasing antioxidant enzyme activities, and affect immunity by altering the proportions of lymphocyte and neutrophil granulocytes in dairy cows. The addition of 60 mg/kg BW of AFE to the diet of dairy cows was shown to be beneficial in this study.

Changes of Productivity, Intestinal Immune Cells and Gut Microbiota in Laying Hens by Microalgae (Mychonastes pushpae) Supplementation (산란계 사료 내 미세조류(Mychonastes pushpae) 첨가에 따른 생산성, 장내 면역세포 및 장내 미생물의 변화)

  • Yeeun Kim;Goeun Han;Sang Seok Joo;Yoo Bhin Kim;Ji Young Jung;Myunghoo Kim;Kyung-Woo Lee
    • Korean Journal of Poultry Science
    • /
    • v.51 no.3
    • /
    • pp.127-143
    • /
    • 2024
  • In this study, we investigated the effects of dietary microalgae (Mychonastes pushpae, MP) supplementation on the changes of egg production and quality, intestinal immunity, composition of the gut microbiota in laying hens. Mychonastes pushpae (MP) supplementation increased egg weight and egg mass in laying hens. It was observed that by MP supplementation changed the population of CD8-TCR γδ+ T cells, one of the subsets of CD3+ T cells, and MHC II+ antigen presenting cells in the small intestine of the laying hens. Besides, composition of beneficial gut microbe like Lactobacillus and Faecalibacterium increased by MP supplementation. Gene enrichment analysis on gut microbiota revealed that genes associated with biosynthesis of unsaturated fatty acids increased, while bacterial chemotaxis and biofilm formation of E. coli was reduced by MP treatment. This study proposed the possibility that the supplementation of MP for laying hens affect the egg productivity, the gut immune cell population and the microbiota. Thus, this can be used as a dietary supplement to improve productivity and gut health in laying hens.

The Beneficial Effects of Extract of Pinus densiflora Needles on Skin Health (솔잎추출물의 피부건강 개선효과)

  • Choi, Jieun;Kim, Woong;Park, Jaeyoung;Cheong, Hyeonsook
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.2
    • /
    • pp.208-217
    • /
    • 2016
  • Pinus densiflora Sieb. et Zucc. (P. densiflora) contains several phenolic compounds that exhibit biological activities, such as antimicrobial, antioxidant, and antihypertensive effects. However, the anti-inflammatory effect of P. densiflora on skin has rarely been reported. Malassezia furfur (M. furfur) is a commensal microbe that induces skin inflammation and is associated with several chronic disorders, such as dandruff, seborrheic dermatitis, papillomatosis, and sepsis. The aim of our study was to identify the anti-inflammatory effects of P. densiflora needle extracts on skin health subjected to M. furfur-induced inflammation. The methanolic extract of the pine needles was partitioned into n-hexane, EtOAc, n-BuOH, and water layers. We measured the anti-inflammatory effects (in macrophages) as well as the antioxidant, antifungal, and tyrosinase inhibitory activity of each of these layers. The antioxidant activity of the individual layers was in the order EtOAc layer > n-BuOH layer > water layer. Only the n-BuOH, EtOAc, and n-hexane layers showed antifungal activity. Additionally, all the layers possessed tyrosinase inhibition activity similar to that of ascorbic acid, which is used as a commercial control. The EtOAc layer was not cytotoxic toward the RAW 264.7 cell line. Interleukin 1 beta and tumor necrosis factor (TNF)-α expression levels in M. furfur-stimulated RAW 264.7 cells treated with the EtOAc layer were decreased markedly compared to those in cells treated with the other layers. Taken together, we believe that the needle extracts of P. densiflora have potential application as alternative anti-inflammatory agents or cosmetic material for skin health improvement.

Mitigation Effect of Drought Stress by Plant Growth-promoting Bacterium Bacillus sp. SB19 on Kale Seedlings in Greenhouse (식물생장촉진 Bacillus sp. SB19 균주의 케일 처리에 대한 가뭄 스트레스 완화 효과)

  • Kim, Dayeon;Lee, Sang-Yeob;Kim, Jung-Jun;Han, Ji-Hee
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.4
    • /
    • pp.833-847
    • /
    • 2016
  • Drought stress is a major agricultural limitation to crop productivity worldwide, especially by which leafy vegetables, plant leaves eaten as vegetable, could be more lethal. The study was carried out to know the effect of drought tolerance plant growth promoting bacteria (PGPB) on water stress of kale seedlings. A total of 146 morphologically distinct bacterial colonies were isolated from bulk soil and rhizosphere soil of leafy vegetables and screened for plant growth promoting microbioassay in greenhouse. Out of them the isolate SB19 significantly promoted the growth of kale seedlings in increasement of about 42% of plant height (14.1 cm), 148% of leaf area ($19.0cm^2$) and 138% of shoot fresh weight (1662.5 mg) attained by the bacterially treated plants compared to distilled water treated control (9.9 cm, $7.7cm^2$, 698.8 mg). Shoot water content of SB19 treated kale seedlings (1393.8 mg) was also increased about 152% compared with control (552.5 mg). The SB19 isolated from bulk soil of kale plant in Iksan, Korea, was identified as species of Bacillus based on 16S rRNA gene sequencing analysis. We evaluated the effect of drought tolerance by the Bacillus sp. SB19 on kale seedlings at 7th and 14th days following the onset of the water stress and watering was only at 7th day in the middle of test. In the survey of 7th and 14th day, there were mitigation effect of drought stress in kale seedlings treated with $10^6$ and $10^7cell\;mL^{-1}$ of SB19 compared to distilled water treated control. Especially, there were more effective mitigation of drought damage in kale seedlings treated with $10^7cell\;mL^{-1}$ than $10^6cell\;mL^{-1}$. Further, although drought injury of bacterially treated kale seedlings were not improved at 14th day compared with 7th day, drought injury of $10^7cell\;mL^{-1}$ of SB19 treated kale seedlings were not happen rapidly but developed over a longer period of time than $10^6cell\;mL^{-1}$ of SB19 or control. The diffidence of results might be caused by the concentration of bacterial suspension. This study suggests that beneficial plant-microbe interaction could be a important role of enhancement of water availability and also provide a good method for improving quality of leafy vegetables under water stress conditions.

Quality Characteristics of Milk Porridge (Tarakjuk) Sterilized with Radiation Technology (방사선 조사 기술을 이용하여 제조한 멸균 우유죽(타락죽)의 품질 특성)

  • Han, In-Jun;Park, Jae-Nam;Park, Jin-Gyu;Song, Beom-Seok;Lee, Ju-Woon;Kim, Jae-Hun;Ryu, Hong-Soo;Park, Jeong-Ro;Chun, Soon-Sil
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.6
    • /
    • pp.885-891
    • /
    • 2011
  • We conducted this study to determine the optimum dose of gamma irradiation needed for the sterilization of milk porridge for patients. Milk porridge, known as Tarakjuk, was irradiated with gamma ray at doses of 0, 1, 3, 5, 7, or 10 kGy. The microbial contamination, $D_{10}$ values of isolated microbe spores, color, and viscosity were measured during storage at $35^{\circ}C$. The initial count of total aerobic bacteria was 2.60 log CFU/g in the non-irradiated milk porridge, but coliforms, spore-forming bacteria, yeast, and molds were not detected. The total counts of aerobic and spore-forming bacteria in the non-irradiated and 1 kGy irradiated milk porridge increased with storage period. These microbes were not detected in the milk porridge irradiated with 10 kGy. The $D_{10}$ values of isolated spores from milk porridge were 2.71 kGy (in milk porridge) and 2.21 kGy (in saline solution). All CIE color increased with gamma irradiation, but the sensory value of color did not significantly change. The viscosity of the milk porridge decreased with gamma irradiation and storage period, and the decrease in viscosity with storage period became smaller as the radiation doses increased. Sensory evaluation scores of the milk porridge were above normal (4.0) when irradiated with less than 5 kGy. These results indicate that gamma irradiation could be beneficial for preparing food with higher nutrient density and lower viscosity, especially for gastric tube-fed patients.