Browse > Article
http://dx.doi.org/10.4014/jmb.2205.05032

Agathobaculum butyriciproducens Shows Neuroprotective Effects in a 6-OHDA-Induced Mouse Model of Parkinson's Disease  

Lee, Da Woon (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Ryu, Young-Kyoung (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Chang, Dong-Ho (Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Park, Hye-Yeon (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Go, Jun (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Maeng, So-Young (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Hwang, Dae Youn (Department of Biomaterials Science, College of Natural Resources and Life Science and Industry Convergence Research Institute, Pusan National University)
Kim, Byoung-Chan (Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Lee, Chul-Ho (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Kim, Kyoung-Shim (Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
Publication Information
Journal of Microbiology and Biotechnology / v.32, no.9, 2022 , pp. 1168-1177 More about this Journal
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disease and is characterized by dopaminergic neuronal death in the midbrain. Recently, the association between alterations in PD pathology and the gut microbiota has been explored. Microbiota-targeted interventions have been suggested as a novel therapeutic approach for PD. Agathobaculum butyriciproducens SR79T (SR79) is an anaerobic bacterium. Previously, we showed that SR79 treatment induced cognitive improvement and reduced Alzheimer's disease pathologies in a mouse model. In this study, we hypothesized that SR79 treatment may have beneficial effects on PD pathology. To investigate the therapeutic effects of SR79 on PD, 6-hydroxydopamine (6-OHDA)-induced mouse models were used. D-Amphetamine sulfate (d-AMPH)-induced behavioral rotations and dopaminergic cell death were analyzed in unilateral 6-OHDA-lesioned mice. Treatment with SR79 significantly decreased ipsilateral rotations induced by d-AMPH. Moreover, SR79 treatment markedly activated the AKT/GSK3β signaling pathway in the striatum. In addition, SR79 treatment affected the Nrf2/ARE signaling pathway and its downstream target genes in the striatum of 6-OHDA-lesioned mice. Our findings suggest a protective role of SR79 in 6-OHDA-induced toxicity by regulating the AKT/Nrf2/ARE signaling pathway and astrocyte activation. Thus, SR79 may be a potential microbe-based intervention and therapeutic strategy for PD.
Keywords
SR79; oxidative stress; inflammation; mouse model; Parkinson's disease;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. 2016. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism. Mol. Psychiatry 21: 786-796.   DOI
2 Ansari F, Pourjafar H, Tabrizi A, Homayouni A. 2020. The effects of probiotics and prebiotics on mental disorders: A review on depression, anxiety, alzheimer, and autism spectrum disorders. Curr. Pharm. Biotechnol. 21: 555-565.   DOI
3 Huang H, Xu H, Luo Q, He J, Li M, Chen H, et al. 2019. Fecal microbiota transplantation to treat Parkinson's disease with constipation: A case report. Medicine (Baltimore) 98: e16163.   DOI
4 Hsieh TH, Kuo CW, Hsieh KH, Shieh MJ, Peng CW, Chen YC, et al. 2020. Probiotics alleviate the progressive deterioration of motor functions in a mouse model of Parkinson's disease. Brain Sci. 10: 206.   DOI
5 Srivastav S, Neupane S, Bhurtel S, Katila N, Maharjan S, Choi H, et al. 2019. Probiotics mixture increases butyrate, and subsequently rescues the nigral dopaminergic neurons from MPTP and rotenone-induced neurotoxicity. J. Nutr. Biochem. 69: 73-86.   DOI
6 Bruce-Keller AJ, Salbaum JM, Luo M, Blanchard Et, Taylor CM, Welsh DA, et al. 2015. Obese-type gut microbiota induce neurobehavioral changes in the absence of obesity. Biol. Psychiatry 77: 607-615.   DOI
7 Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. 2013. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl. Acad. Sci. USA 110: 9066-9071.   DOI
8 Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB, et al. 2015. Colonic bacterial composition in Parkinson's disease. Mov. Disord. 30: 1351-1360.   DOI
9 Go J, Chang DH, Ryu YK, Park HY, Lee IB, Noh JR, et al. 2021. Human gut microbiota Agathobaculum butyriciproducens improves cognitive impairment in LPS-induced and APP/PS1 mouse models of Alzheimer's disease. Nutr Res. 86: 96-108.   DOI
10 Hirsch EC, Hunot S. 2009. Neuroinflammation in Parkinson's disease: a target for neuroprotection? Lancet Neurol. 8: 382-397.   DOI
11 Ryu YK, Park HY, Go J, Choi DH, Kim YH, Hwang JH, et al. 2018. Metformin inhibits the development of L-DOPA-induced dyskinesia in a murine model of Parkinson's disease. Mol. Neurobiol. 55: 5715-5726.   DOI
12 Go J, Park TS, Han GH, Park HY, Ryu YK, Kim YH, et al. 2018. Piperlongumine decreases cognitive impairment and improves hippocampal function in aged mice. Int. J. Mol. Med. 42: 1875-1884.   DOI
13 Ryu YK, Kang Y, Go J, Park HY, Noh JR, Kim YH, et al. 2017. Humulus japonicus prevents dopaminergic neuron death in 6-hydroxydopamine-induced models of Parkinson's disease. J. Med. Food 20: 116-123.   DOI
14 Glinka Y, Gassen M, Youdim MB. 1997. Mechanism of 6-hydroxydopamine neurotoxicity. J. Neural. Transm. Suppl. 50: 55-66.   DOI
15 Castelli V, d'Angelo M, Lombardi F, Alfonsetti M, Antonosante A, Catanesi M, et al. 2020. Effects of the probiotic formulation SLAB51 in in vitro and in vivo Parkinson's disease models. Aging (Albany NY) 12: 4641-4659.   DOI
16 Park TS, Ryu YK, Park HY, Kim JY, Go J, Noh JR, et al. 2017. Humulus japonicus inhibits the progression of Alzheimer's disease in a APP/PS1 transgenic mouse model. Int. J. Mol. Med. 39: 21-30.   DOI
17 Park HY, Kang YM, Kang Y, Park TS, Ryu YK, Hwang JH, et al. 2014. Inhibition of adenylyl cyclase type 5 prevents L-DOPA-induced dyskinesia in an animal model of Parkinson's disease. J. Neurosci. 34: 11744-11753.   DOI
18 Keith BJ Fraklin GP. 2007. The mouse brain in stereotaxic coordinates, Third edition Ed. Elsevier, New York, USA.
19 Ryu YK, Go J, Park HY, Choi YK, Seo YJ, Choi JH, et al. 2020. Metformin regulates astrocyte reactivity in Parkinson's disease and normal aging. Neuropharmacology 175: 108173.   DOI
20 Ahn S, Jin TE, Chang DH, Rhee MS, Kim HJ, Lee SJ, et al. 2016. Agathobaculum butyriciproducens gen. nov.  sp. nov., a strict anaerobic, butyrate-producing gut bacterium isolated from human faeces and reclassification of Eubacterium desmolans as Agathobaculum desmolans comb. nov. Int. J. Syst. Evol. Microbiol. 66: 3656-3661.   DOI
21 Beaulieu JM, Del'guidice T, Sotnikova TD, Lemasson M, Gainetdinov RR. 2011. Beyond cAMP: The regulation of Akt and GSK3 by dopamine receptors. Front. Mol. Neurosci. 4: 38.   DOI
22 Doble BW, Woodgett JR. 2003. GSK-3: tricks of the trade for a multi-tasking kinase. J. Cell Sci. 116: 1175-1186.   DOI
23 Percario S, da Silva Barbosa A, Varela ELP, Gomes ARQ, Ferreira MES, de Nazare Araujo Moreira T, et al. 2020. Oxidative stress in Parkinson's disease: Potential benefits of antioxidant supplementation. Oxid. Med. Cell Longev. 2020: 2360872.
24 de Oliveira MR, Ferreira GC, Schuck PF. 2016. Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: Role for PI3K/Akt/Nrf2 pathway. Toxicol. In Vitro 32: 41-54.   DOI
25 Quesada A, Lee BY, Micevych PE. 2008. PI3 kinase/Akt activation mediates estrogen and IGF-1 nigral DA neuronal neuroprotection against a unilateral rat model of Parkinson's disease. Dev. Neurobiol. 68: 632-644.   DOI
26 Xie CL, Lin JY, Wang MH, Zhang Y, Zhang SF, Wang XJ, et al. 2016. Inhibition of Glycogen Synthase Kinase-3beta (GSK-3beta) as potent therapeutic strategy to ameliorates L-dopa-induced dyskinesia in 6-OHDA parkinsonian rats. Sci. Rep. 6: 23527.   DOI
27 Sun J, Xu J, Ling Y, Wang F, Gong T, Yang C, et al. 2019. Fecal microbiota transplantation alleviated Alzheimer's disease-like pathogenesis in APP/PS1 transgenic mice. Transl. Psychiatry 9: 189.   DOI
28 Krishnankutty A, Kimura T, Saito T, Aoyagi K, Asada A, Takahashi SI, et al. 2017. In vivo regulation of glycogen synthase kinase 3beta activity in neurons and brains. Sci. Rep. 7: 8602.   DOI
29 Reiter RJ. 1998. Oxidative damage in the central nervous system: protection by melatonin. Prog. Neurobiol. 56: 359-384.   DOI
30 Miao L, St Clair DK. 2009. Regulation of superoxide dismutase genes: implications in disease. Free Radic. Biol. Med. 47: 344-356.   DOI
31 Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, et al. 2017. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541: 481-487.   DOI
32 Haavik J, Toska K. 1998. Tyrosine hydroxylase and Parkinson's disease. Mol. Neurobiol. 16: 285-309.   DOI
33 Franke TF, Kaplan DR, Cantley LC. 1997. PI3K: downstream AKTion blocks apoptosis. Cell 88: 435-437.   DOI
34 Albin RL, Young AB, Penney JB. 1989. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12: 366-375.   DOI
35 Zhao Z, Ning J, Bao XQ, Shang M, Ma J, Li G, et al. 2021. Fecal microbiota transplantation protects rotenone-induced Parkinson's disease mice via suppressing inflammation mediated by the lipopolysaccharide-TLR4 signaling pathway through the microbiota-gut-brain axis. Microbiome 9: 226.   DOI
36 Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131: 1164-1178.   DOI
37 Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, et al. 2012. Host-gut microbiota metabolic interactions. Science 336: 1262-1267.   DOI
38 Holscher HD. 2017. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes 8: 172-184.   DOI
39 Claesson MJ, Cusack S, O'Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, et al. 2011. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc. Natl. Acad. Sci. USA 108 Suppl 1: 4586-4591.   DOI
40 Unger MM, Spiegel J, Dillmann KU, Grundmann D, Philippeit H, Burmann J, et al. 2016. Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat. Disord. 32: 66-72.   DOI
41 Martinez-Martin P, Rodriguez-Blazquez C, Kurtis MM, Chaudhuri KR, Group NV. 2011. The impact of non-motor symptoms on health-related quality of life of patients with Parkinson's disease. Mov. Disord. 26: 399-406.   DOI
42 Kalia LV, Lang AE. 2015. Parkinson's disease. Lancet 386: 896-912.   DOI
43 Rana AQ, Ahmed US, Chaudry ZM, Vasan S. 2015. Parkinson's disease: a review of non-motor symptoms. Expert Rev. Neurother. 15: 549-562.   DOI
44 Schapira AHV, Chaudhuri KR, Jenner P. 2017. Non-motor features of Parkinson disease. Nat. Rev. Neurosci. 18: 435-450.   DOI
45 Neufeld KM, Kang N, Bienenstock J, Foster JA. 2011. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol. Motil. 23: 255-264, e119.   DOI
46 Rani L, Mondal AC. 2021. Unravelling the role of gut microbiota in Parkinson's disease progression: Pathogenic and therapeutic implications. Neurosci. Res. 168: 100-112.   DOI
47 Xu R, Zhang Y, Chen S, Zeng Y, Fu X, Chen T, et al. 2022. The role of the probiotic Akkermansia muciniphila in brain functions: insights underpinning therapeutic potential. Crit. Rev. Microbiol. 11: 1-26.
48 Thiruvengadam M, Venkidasamy B, Subramanian U, Samynathan R, Ali Shariati M, Rebezov M, et al. 2021. Bioactive compounds in oxidative stress-mediated diseases: Targeting the NRF2/ARE signaling pathway and epigenetic regulation. Antioxidants (Basel). 10: 1859.   DOI
49 Kramer BC, Mytilineou C. 2004. Alterations in the cellular distribution of bcl-2, bcl-x and bax in the adult rat substantia nigra following striatal 6-hydroxydopamine lesions. J. Neurocytol. 33: 213-223.   DOI
50 Hayashi A, Sato T, Kamada N, Mikami Y, Matsuoka K, Hisamatsu T, et al. 2013. A single strain of Clostridium butyricum induces intestinal IL-10-producing macrophages to suppress acute experimental colitis in mice. Cell Host Microbe. 13: 711-722.   DOI
51 Zhu Y, Zhang J, Zeng Y. 2012. Overview of tyrosine hydroxylase in Parkinson's disease. CNS Neurol. Disord. Drug Targets 11: 350-358.   DOI
52 Yang L, Wang H, Liu L, Xie A. 2018. The role of insulin/IGF-1/PI3K/Akt/GSK3beta signaling in Parkinson's disease dementia. Front. Neurosci. 12: 73.   DOI
53 Chung CY, Koprich JB, Endo S, Isacson O. 2007. An endogenous serine/threonine protein phosphatase inhibitor, G-substrate, reduces vulnerability in models of Parkinson's disease. J. Neurosci. 27: 8314-8323.   DOI
54 Cersosimo MG, Raina GB, Pecci C, Pellene A, Calandra CR, Gutierrez C, et al. 2013. Gastrointestinal manifestations in Parkinson's disease: prevalence and occurrence before motor symptoms. J. Neurol. 260: 1332-1338.   DOI
55 Hughes AJ, Daniel SE, Kilford L, Lees AJ. 1992. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J. Neurol. Neurosurg. Psychiatry 55: 181-184.   DOI
56 Fasano A, Visanji NP, Liu LW, Lang AE, Pfeiffer RF. 2015. Gastrointestinal dysfunction in Parkinson's disease. Lancet Neurol. 14: 625-639.   DOI
57 Santos SF, de Oliveira HL, Yamada ES, Neves BC, Pereira A, Jr. 2019. The gut and Parkinson's disease-A bidirectional pathway. Front. Neurol. 10: 574.   DOI
58 Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. 2019. The microbiota-gut-brain Axis. Physiol. Rev. 99: 1877-2013.   DOI
59 Fulling C, Dinan TG, Cryan JF. 2019. Gut microbe to brain signaling: What happens in vagus. Neuron 101: 998-1002.   DOI
60 Deumens R, Blokland A, Prickaerts J. 2002. Modeling Parkinson's disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp. Neurol. 175: 303-317.   DOI
61 Whitton PS. 2010. Neuroinflammation and the prospects for anti-inflammatory treatment of Parkinson's disease. Curr. Opin. Investig. Drugs. 11: 788-794.
62 Yan J, Fu Q, Cheng L, Zhai M, Wu W, Huang L, et al. 2014. Inflammatory response in Parkinson's disease (Review). Mol. Med. Rep. 10: 2223-2233.   DOI
63 Troncoso-Escudero P, Parra A, Nassif M, Vidal RL. 2018. Outside in: Unraveling the role of neuroinflammation in the progression of Parkinson's disease. Front. Neurol. 9: 860.   DOI
64 Gagne JJ, Power MC. 2010. Anti-inflammatory drugs and risk of Parkinson disease: a meta-analysis. Neurology 74: 995-1002.   DOI
65 Park HY, Ryu YK, Kim YH, Park TS, Go J, Hwang JH, et al. 2016. Gadd45beta ameliorates L-DOPA-induced dyskinesia in a Parkinson's disease mouse model. Neurobiol. Dis. 89: 169-179.   DOI
66 Oh YJ, Wong SC, Moffat M, O'Malley KL. 1995. Overexpression of Bcl-2 attenuates MPP+, but not 6-ODHA, induced cell death in a dopaminergic neuronal cell line. Neurobiol. Dis. 2: 157-167.   DOI
67 Chen G, Bower KA, Ma C, Fang S, Thiele CJ, Luo J. 2004. Glycogen synthase kinase 3beta (GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J. 18: 1162-1164.   DOI
68 Jope RS, Johnson GV. 2004. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 29: 95-102.   DOI
69 Aleyasin H, Rousseaux MW, Marcogliese PC, Hewitt SJ, Irrcher I, Joselin AP, et al. 2010. DJ-1 protects the nigrostriatal axis from the neurotoxin MPTP by modulation of the AKT pathway. Proc. Natl. Acad. Sci. USA 107: 3186-3191.   DOI
70 Li L, Dong H, Song E, Xu X, Liu L, Song Y. 2014. Nrf2/ARE pathway activation, HO-1 and NQO1 induction by polychlorinated biphenyl quinone is associated with reactive oxygen species and PI3K/AKT signaling. Chem. Biol. Interact. 209: 56-67.   DOI
71 Liddelow SA, Barres BA. 2017. Reactive astrocytes: Production, function, and therapeutic potential. Immunity 46: 957-967.   DOI
72 Gorshkov K, Aguisanda F, Thorne N, Zheng W. 2018. Astrocytes as targets for drug discovery. Drug Discov. Today 23: 673-680.   DOI
73 Aaseth J, Dusek P, Roos PM. 2018. Prevention of progression in Parkinson's disease. Biometals 31: 737-747.   DOI
74 Liu J, Wang F, Liu S, Du J, Hu X, Xiong J, et al. 2017. Sodium butyrate exerts protective effect against Parkinson's disease in mice via stimulation of glucagon like peptide-1. J. Neurol. Sci. 381: 176-181.
75 Braak H, Rub U, Gai WP, Del Tredici K. 2003. Idiopathic Parkinson's disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural. Transm (Vienna) 110: 517-536.   DOI
76 Kawase T, Nagasawa M, Ikeda H, Yasuo S, Koga Y, Furuse M. 2017. Gut microbiota of mice putatively modifies amino acid metabolism in the host brain. Br. J. Nutr. 117: 775-783.   DOI
77 Cantu-Jungles TM, Rasmussen HE, Hamaker BR. 2019. Potential of prebiotic butyrogenic fibers in Parkinson's disease. Front. Neurol. 10: 663.   DOI