• 제목/요약/키워드: bending moment effect

검색결과 369건 처리시간 0.025초

Brazier effect of single- and double-walled elastic tubes under pure bending

  • Sato, Motohiro;Ishiwata, Yuta
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.17-26
    • /
    • 2015
  • The cross sections of hollow cylindrical tubes ovalise under a pure bending condition, and this reduces their flexural stiffness as their curvatures increase. It is important to accurately evaluate this phenomenon, known as the 'Brazier effect', to understand the bending behaviour of the systems considered. However, if the tubes are supported by an elastic medium or foundation, the ovalisation displacements of their cross sections may decrease. From this point of view, the purpose of this research is to analytically investigate the bending characteristics of single- and double-walled elastic tubes contacted by an elastic material by considering the Brazier effect. The Brazier moment, which is the maximum moment-carrying capacity of the ovalised cross section, can be calculated by introducing the strain energy per unit length of the tube in terms of the degree of ovalisation for the tube and the curvature. The total strain energy of the double-walled system is the sum of the strain energies of the outer and inner tubes and that of the compliant core. Results are comparatively presented to show the variation in the degree of ovalisation and the Brazier moment for single- and double-walled tubes.

반복-굽힘 모멘트가 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전에 미치는 영향 (The Influence of Cyclic-bending Moment on the Delamination Zone and the Fatigue Crack Propagation in A15052/AFRP Laminates)

  • 송삼홍;김철웅
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.231-237
    • /
    • 2000
  • A15052/AFRP laminates were developed principally to obtain a material with good fatigue strength, in which possible cracks would grow very slowly. Weight savings of more than 30% should be attainable in practice. Also, the crack bridging fibers could still was carry a significant part of the load over the crack, thus the COD and stress intensity factor was reduced at the crack tip. A15052/ AFRP laminates consists of three thin sheets of 5052-H34 aluminum alloy and two layers of [0] unidirectional aramid fiber prepreg. The cyclic-bending moment test was investigated based on applying the five kinds of bending moments. The size of the delamination zone produced between 5052-H34 aluminum alloy sheets and fiber-adhesive layers was measured from ultrasonic C-scan pictures taken around the fatigue crack. In addition, the relationship between the cyclic-bending moment and the delamination zone size was studied and the effect of fiber bridging mechanism was also considered.

  • PDF

Assessment the effect of pile intervals on settlement and bending moment raft analysis of piled raft foundations

  • Ghiasi, Vahed;Moradi, Mobin
    • Geomechanics and Engineering
    • /
    • 제16권2호
    • /
    • pp.187-194
    • /
    • 2018
  • Application the pile group foundation to reduce overall settlement of the foundation and also avoid a very fruitful settlement of foundations, inconsistent was carried out. In such a case, in event that the Foundation, not as a mere pile group, which as a system consisting of a broad foundation with pile Group, economic design criteria will be provided in spite of high safety. A new approach in the design of the Foundation can be introduced as the piles are just a tool to improve the parameters of soil hardness; that it can work with detachable piles from raft. Centralized arrangement of piles as the most optimal layout of piles in reducing inconsistent settlement, which is the lowest value of resulting layout in this differential settlement. Using the combination of piles connected and disconnected to form the raft, bending moment created in the raft is reduced. It also concentrated arrangements have greatest effect in reducing amount of moment applied to the raft.

소성모멘트를 이용한 철근 직선화 장치의 하중 분석 (An evaluation of load of the steel bar straightener using plastic moment)

  • 이동호;박수진;손정현;유완석
    • 한국철도학회논문집
    • /
    • 제5권3호
    • /
    • pp.196-200
    • /
    • 2002
  • In this paper, the straightening process of a steel bar straightener is studied. The straightener carries out the bending and reverse bending process repeatedly. Plastic theory is employed for the analysis of roller-supporting-load, and the residual stress and the axial load of a steel bar are calculated by using the bending moment. The Bauschinger effect and plastic moment are calculated by using the residual stress and Swift's method respectively. It is verified from the experiments that the displacement calculated from theory makes it possible to straighten a steel bar.

SWATH선의 최종 횡굽힘강도 해석 (Ultimate Transverse Bending Strength Analysis of a SWATH Ship)

  • 박치모
    • 한국해양공학회지
    • /
    • 제6권2호
    • /
    • pp.103-112
    • /
    • 1992
  • The calculation method which takes into account the shear lag effects on the ultimate transverse bending moment of a SWATH(Small Waterplane Area Twin Hull) ship has been developed. In case of the ultimate bending strength analysis of conventional monohull ships and general box girder structures, the hypothesis that plane section remains plane after bending can be employed but not in the case of the structures having wide flange. For the ultimate bending strength analysis of such structures, a new method which can take into account the effect of shear lag on the ultimate bending strength has been developed by adopting more reasonable assumption that warping distortion of the section takes place inthe same way as the actual stress distribution. Finally, the proposed method has been applied to a a SWATH cross deck structure.

  • PDF

감육형상 및 내압이 원자력 감육배관의 파단에 미치는 영향 -내압과 굽힘모멘트가 동시에 작용하는 경우- (Effect of Wall Thinned Shape and Pressure on Failure of Wall Thinned Nuclear Piping Under Combined Pressure and Bending Moment)

  • 심도준;임환;최재붕;김영진;김진원;박치용
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.742-749
    • /
    • 2003
  • Failure of a pipeline due to local wall thinning is getting more attention in the nuclear power plant industry. Although guidelines such as ANSI/ASME B31G and ASME Code Case N597 are still useful fer assessing the integrity of a wall thinned pipeline, there are some limitations in these guidelines. For instance, these guidelines consider only pressure loading and thus neglect bending loading. However, most Pipelines in nuclear power plants are subjected to internal pressure and bending moment due to dead-weight loads and seismic loads. Therefore, an assessment procedure for locally wall thinned pipeline subjected to combined loading is needed. In this paper, three-dimensional finite element(FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Maximum moments based on true ultimate stress(${\alpha}$$\sub$u,t/) were obtained from FE results to predict the failure of the pipe. These results were compared with test results, which showed good agreement. Additional finite element analyses were performed to investigate the effect of key parameters, such as wall thinned depth, wall thinned angle and wall thinned length, on maximum moment. Also, the effect of internal pressure on maximum moment was investigated. Change of internal pressure did not show significant effect on the maximum moment.

반복-굽힘 모멘트의 진폭에 따른 A15052/AFRP 적층재의 층간분리 영역과 피로균열진전 거동 (The Delamination and Fatigue Crack Propagation Behavior in A15052/AFRP Laminates Under Cyclic Bending Moment)

  • 송삼홍;김철웅
    • 대한기계학회논문집A
    • /
    • 제25권8호
    • /
    • pp.1277-1286
    • /
    • 2001
  • Aluminum 5052/Aramid Fiber Reinforced Plastic(Al5052/AFRP) laminates are applied to the fuselage-wing intersection. The Al5052/AFRP laminates suffer from the cyclic bending moment of variable amplitude during the service. Therefore, the influence of cyclic bending moment on the delamination and the fatigue crack propagation behavior in Al5052/AFRP laminate was investigated in this study. Al5052/AFRP laminate composite consists of three thin sheets of Al5052 and two layers of unidirectional aramid fibers. The cyclic bending moment fatigue tests were performed with five different levels of bending moment. The shape and size of the delamination zone formed along the fatigue crack between Al5052 sheet and aramid fiber-adhesive layer were measured by an ultrasonic C-scan. The relationships between da/dN and ΔK, between the cyclic bending moment and the delamination zone size, and between the fiber bridging mechanism and the delamination zone were studied. Fiber failures were not observed in the delamination zone in this study. It represents that the fiber bridging modification factor should turn out to increase and that the fatigue crack growth rate should decrease. The shape of delamination zone turns out to be semi-elliptic with the contour decreased non-linearly toward the crack tip.

미드솔의 경도 및 두께가 스포츠화의 굽힘 특선에 미치는 영향 (The Effects of Hardness and Thickness of Midsole on the Bending Properties of Footwear)

  • 박차철
    • Elastomers and Composites
    • /
    • 제41권2호
    • /
    • pp.125-130
    • /
    • 2006
  • 폴리우레탄(PU)과 폴리에틸렌비닐아세터이트(EVA) 미드솔이 스포츠화의 굽힘 강성에 미치는 영향을 이해하기 위하여 두께와 경도가 다른 중창으로 스포츠화를 제조하여 중창이 스포츠화의 굽힘특성에 미치는 영향을 고찰하였다. 스포츠화의 굽힘 모멘트는 굽힘 각도 $19^{\circ}$에서 나타나기 시작했으며, 이 초기 굽힘각도는 중창의 경도나 두께에 무관한 것으로 나타났다. 중창의 경도 및 두께가 증가함에 따라 스포츠화의 굽힘 모멘트의 값은 현저하게 증가하는 경향을 나타내었다. 발포체 시트나 미드솔 자체만으로 비교하였을 때보다 스포츠화의 굽힘 강성이 미드솔의 두께나 경도 등 신발의 설계에 따라 더욱 크게 영향을 받는 것으로 나타났다.

집중 질량 및 관성모멘트를 갖는 회전하는 티모센코 보의 면외굽힘 진동 (Flapwise Bending Vibration of Rotating Timoshenko Beams with Concentrated Mass Moment of Inertia)

  • 박정훈;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1997년도 추계학술대회논문집; 한국과학기술회관; 6 Nov. 1997
    • /
    • pp.110-115
    • /
    • 1997
  • A modeling method for the bending vibration analysis of rotating Timoshenko beams with concentrated mass and mass moment of inertia is presented. The shear and rotary inertia effects become critical for the accurate estimation of the natural frequencies and modeshapes as the slenderness ratio decreases. The effect of the concentrated mass and mass moment of inertia on the natural frequencies are also investigated with the modeling method.

  • PDF

파임을 가진 국산 침엽수재의 휨성능 및 구조설계기준에 관한 연구 (Bending Properties and Recommened Design Criteria for Domestic Softwood with Notch)

  • 오세창
    • Journal of the Korean Wood Science and Technology
    • /
    • 제26권4호
    • /
    • pp.6-12
    • /
    • 1998
  • Test results of domestic softwood lumber were presented to examine the notch effect of beams and compare to present AIJ(Architecture Institute of Japan) formula in notched wood member especially positioned in bottom side (tension side) of a beam. Notched lumber was tested under following condition : each specimen supported simply, and subjected to third-point loading at points of 1/3 of the span length. Notch was located opposite side to loading direction and notch depth were 1/6, 1/4, 1/3 of beam depth. Deflection and load were measured by digital dial guage each in 25kgf increment. Bending test results were as follows; Mpro/Mmax range (proportional and maxium bending moment ratio in notched beam) was 0.5 - 0.65. It was considered that maxium bending moment was about 1.5 times to proportional bending moment in notched beam and showed same tendency in the test result of ordinary wood specimens. AU standard formula for the tension side notch, Mmat = 0.6 ${\times}$ (Zo $\sigma$), the constant 0.6 was suitble for notch ratio(notch depth to beam depth) 1/6, but this ratio for 1/4, and 1/3 was not. So it is preferable to accept smaller value than 0.6 for notch ratio more than 1/3. These experiment results showed critical effect in tension side notched wood beam especially in greater than notch ratio 1.3 of wood beam. From the above results, it is recommened to revise design formula adoptable to domestic wood constructon member with tension side notched member.

  • PDF