• Title/Summary/Keyword: bending factor

Search Result 614, Processing Time 0.025 seconds

역극성시 금속수지복합체와 세라믹수지복합체의 형상방전가공 특성

  • 우정윤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.52-57
    • /
    • 1996
  • Conductive Ceramic Matrix Composite(CMC) of TIC/Al2O3 and Metal Matrix Composite (MMC) of SiC/Al were experienced by the die sinking Electrical Discharge Machining(EDM) for different current and duty factor according to negative polarity. Inthis experimental study Material Removal Rate(MRR) maximum surface roughness four point bending stress distribution and Scanning Electron Microscopy(SEM) Photographs were analysed. the higher MRR was obtained for CMC than MMC but slowly decreased around duty factor of 0.67 for MMC and better surface morphology was found CMC than MMC. The SEM photographs of discharge traces for CMC showe uniform shape about 100 to 200${\mu}{\textrm}{m}$ in diameter but MMC showed irregular shape.

  • PDF

Development of Live Load Moment Equations Using Orthotropic Plate Theory (직교 이방성 판 이론을 이용한 바닥판 활하중 모멘트 산정식 개발)

  • Ahn Ye-Jun;Nam Suk-Hyun;Park Jang-Ho;Shin Yung-Seok
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.749-756
    • /
    • 2006
  • Because of the orthotropic elastic properties and significant two-way bending action, orthotropic plate theory may be suitable for describing the behavior of concrete filled grid bridge decks. Current AASHTO LRFD Bridge Design Specification(2004) has live load moment equations considering flexural rigidity ratio between longitudinal and transverse direction, but the Korea highway bridge design specification(2005) doesn't. The Korea highway bridge standard specification LRFD(1996) considers an orthotropic plate model with a single load to estimate live load moments in concrete filled grid bridge decks, which may not be conservative. This paper presents live load moment equations for truck and passenger car, based on orthotropic plate theory. The equations of truck model use multiple presence factor, impact factor, design truck and design tandem of the Korea highway bridge standard specification LRFD(1996). The estimated moments are verified through finite-element analyses.

  • PDF

Strength Estimation of Injection Molded Plastic Stepped Spur Gear (사출 성형 플라스틱 단붙이 기어의 강도평가)

  • Chong, Tae-Hyong;Moon, Chang-Ki;Ha, Young-Wook
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.3
    • /
    • pp.17-23
    • /
    • 2006
  • The strength estimation is carried out for injection molded plastic stepped gear. The stepped gear is considered as a plate model which is fixed by two edges and freed on the other sides. The stress of common normal gear is calculated by Lewis formula which can be derived quite simply from the equation fur the stress at the root of a cantilever beam. Stress ratio(step factor) between the common normal gear and stepped gear is proposed for the ratio of the bending stress of normal gear and that of stepped gear. This study proposes the step factor added in Dupont equation which is used for strength estimation of injection molded plastic stepped gear.

Effective Analysis of Beams and Plates using the RKPM (무요소법을 이용한 보와 판의 효과적인 해석)

  • Song, Tae-Han;Seog, Byung-Ho;Lim, Jang-Keun
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.680-685
    • /
    • 2001
  • In this paper, RKPM is extended for solving moderately thick and thin structures. General Timoshenko beam and Mindlin plate theory are used far formulation. Shear locking is the main difficulty in analysis of these kinds of structures. Shear relaxation factor, which is formulated using the difference between bending and shear strain energy, is introduced to overcome shear locking. Analysis results obtained reveal that RKPM using introduced method is free of locking and very effectively applicable to deeply as well as shallowly beams and plates.

  • PDF

Experimental Research of Change in Magnetic Flux Density Due to Load for Measuring KI (응력확대계수측정을 위한 하중에 의한 자속밀도변화의 실험적 연구)

  • Lee, Jeong-Hee
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.1
    • /
    • pp.129-132
    • /
    • 2004
  • In order to determine the effective way of measuring the Mode I stress intensity factor, $K_I$, by means of the alternating current potential drop(ACPD) technique for a material containing a two-dimensional surface crack, the change in magnetic flux density above the cracked specimen surface was studied experimentally. The change in magnetic flux in the air above the cracked specimen made of aluminum alloy is measured by changing the load by four-point bending. The magnetic flux in the air is almost not changed by increasing the load in teh specimen. The change in potential drop due to load is not caused by the change in electro-motive force induced in the coiled measuring system. This experimental result agree to the result of theoretical analysis in reference 7).

  • PDF

Fatigue Life Evaluation of the Plastic Gear (플라스틱 기어의 피로수명 평가 및 수명 예측)

  • Chong Tae Hyong;Kang Sung Kyu;Ha Young Wook
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.239-245
    • /
    • 2005
  • Through the fatigue test of plastic gears using polyacetal polymer, this research aims at providing basic data for not only specifying operation conditions of plastic gears, but also designing dimensions of plastic gears with giving fatigue life and the estimated equation of fatigue life of plastic gears. That is, from the fatigue life curves, the estimated equation of fatigue life of plastic gears is taken out. For the estimated equation of fatigue life of plastic gears, this research provides two test methods; one is preserving non-limited temperature of tooth flank, the other is preserving limited temperature of tooth flank. As results, how the temperature of tooth flank affects the fatigue life is shown. In addition, based on the endurance limit, the essential factors of the unit load and K-factor are determined, which are needed in the design of gear by bending strength and surface durability.

  • PDF

Effective Analysis of Beams Using the RKPM (RKPM을 이용한 보의 효과적 해석 방안)

  • 송태한;석병호
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.5
    • /
    • pp.73-79
    • /
    • 2003
  • In this paper, RKPM is extended for solving moderately thick and thin beams. General Timoshenko beam theory is used for formulation. Shear locking is the main difficulty in analysis of these kinds of structures. Shear relaxation factor, which is formulated using the difference between bending and shear strain energy, and corrected shear rigidity are introduced to overcome shear locking. Analysis results obtained reveal that RKPM using introduced methods is free of locking and very effectively applicable to deep beams as well as shallow beams.

An Experimental Study on Fatigue Fracture Behavior of Steel for Merchant Ships (선박용 강재의 피로파괴거동의 실험적 연구)

  • Moon-Sik,Han;Sang-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.25 no.1
    • /
    • pp.21-32
    • /
    • 1988
  • An experimental study was carried out to identify the fatigue fracture behavior of steel for merchant ships. The bending and shear loads were applied simultaneously on the specimens to simulate of real load condition for a ship. The effects of the stress intensity factor under mode I with mode II loading condition on the initiation and the propagation of a crack were investigated, with particular emphasis on mode II. When the $K_{II}$ stress intensity factor in mode II was applied under mode I loading condition, the propagation behavior of a crack is to be affected mainly by the anisotropic characteristic of materials.

  • PDF

Behaviour of Tube Structures in terms of Structural Parameters (구조변수에 의한 튜브 구조의 거동)

  • 이강건;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.327-334
    • /
    • 2002
  • The global behavior of tube structures (including tube and tube(s)-in-tube constructions) is investigated for the behavioral characteristics of the structures and their performance in relation to the various structural parameters. The stiffness factor in terms of the axial stiffness of the columns and the bending stiffness of both columns and beams is chosen as a parameter to explain the global behavior of the structures. The shear-lag phenomenon is also discussed to explain the general behavior of the structures. Three types of tube structures, with various structural parameters, are analysed for the comparative study, and the results are compared to investigate the structural response and performance of such structures. As a result of the comparison it is obtained that the axial stiffness of the columns is the most important factor governing the response of the tube structures under lateral loading

  • PDF

Endurance Evaluation and Fatigue Property fo Axle Housing (Axle Housing의 내구성 판단과 피로특성)

  • Byeon, Hui-Mun;Lee, Sun-Bok
    • 한국기계연구소 소보
    • /
    • s.13
    • /
    • pp.3-13
    • /
    • 1984
  • Fatigue failure of axle housing could cause many injuries and much financial loss. This challenges the engineer to improve design decisions involving fatigue. Endurance evaluation of axle housing is great interest to auto-mobile manufacturers for the sake of safety and reliability. Axle housing is subjected to gross vehicle weight(G.V.W)as mean load and alternating load. Theoretical design diagram involving mean and alternating stresses is used for the evaluation of axle housing fatigue endurance with the equivalent stress of fatigue critical area on the axle housing. Four point bending fatigue tests on axle housing with constant amplitude loading at approximately R=0 were performed with 50 ton servohydraulic strucural fatigue testing machine developed at KIMM. Specimens were made with the same material STKM 13B as the axle housing and tested to obtain S_N data. Five specimens of STKM 13B were tested at 253.61 MPa and weibull distribution was obtained at the same stress level. Material data and structural data were compares and fatigue stress property factor and fatigue life property factor were obtained.

  • PDF