• Title/Summary/Keyword: benchmark set

Search Result 230, Processing Time 0.027 seconds

Big data analysis on NAVER Smart Store and Proposal for Sustainable Growth Plan for Small Business Online Shopping Mall (네이버 스마트스토어에 대한 빅데이터 분석 및 소상공인 온라인쇼핑몰 지속성장 방안 제안)

  • Hyeon-Moon Chang;Seon-Ju Kim;Chae-Woon Kim;Ji-Il Seo;Kyung-Ho Lee
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.153-172
    • /
    • 2022
  • Online shopping has transformed and rapidly grown the entire market at the forefront of wholesale and retail services as an effective solution to issues such as digital transformation and social distancing policy (COVID-19 pandemic). Small business owners, who form the majority at the center of the online shopping industry, are constantly collecting policy changes and market trend information to overcome these problems and use them for marketing and other sales activities in order to overcome these problems and continue to grow. Objective and refined information that is more closely related to the business is also needed. Therefore, in this paper, through the collection and analysis of big data information, which is the core technology of digital transformation, key variables are set in product classification, sales trends, consumer preferences, and review information of online shopping malls, and a method of using them for competitor comparison analysis and business sustainability evaluation has been prepared and we would like to propose it as a service. If small and medium-sized businesses can benchmark competitors or excellent businesses based on big data and identify market trends and consumer tendencies, they will clearly recognize their level and position in business and voluntarily strive to secure higher competitiveness. In addition, if the sustainable growth of the online shopping mall operator can be confirmed as an indicator, more efficient policy establishment and risk management can be expected because it has an improved measurement method.

A study on the prediction of korean NPL market return (한국 NPL시장 수익률 예측에 관한 연구)

  • Lee, Hyeon Su;Jeong, Seung Hwan;Oh, Kyong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.2
    • /
    • pp.123-139
    • /
    • 2019
  • The Korean NPL market was formed by the government and foreign capital shortly after the 1997 IMF crisis. However, this market is short-lived, as the bad debt has started to increase after the global financial crisis in 2009 due to the real economic recession. NPL has become a major investment in the market in recent years when the domestic capital market's investment capital began to enter the NPL market in earnest. Although the domestic NPL market has received considerable attention due to the overheating of the NPL market in recent years, research on the NPL market has been abrupt since the history of capital market investment in the domestic NPL market is short. In addition, decision-making through more scientific and systematic analysis is required due to the decline in profitability and the price fluctuation due to the fluctuation of the real estate business. In this study, we propose a prediction model that can determine the achievement of the benchmark yield by using the NPL market related data in accordance with the market demand. In order to build the model, we used Korean NPL data from December 2013 to December 2017 for about 4 years. The total number of things data was 2291. As independent variables, only the variables related to the dependent variable were selected for the 11 variables that indicate the characteristics of the real estate. In order to select the variables, one to one t-test and logistic regression stepwise and decision tree were performed. Seven independent variables (purchase year, SPC (Special Purpose Company), municipality, appraisal value, purchase cost, OPB (Outstanding Principle Balance), HP (Holding Period)). The dependent variable is a bivariate variable that indicates whether the benchmark rate is reached. This is because the accuracy of the model predicting the binomial variables is higher than the model predicting the continuous variables, and the accuracy of these models is directly related to the effectiveness of the model. In addition, in the case of a special purpose company, whether or not to purchase the property is the main concern. Therefore, whether or not to achieve a certain level of return is enough to make a decision. For the dependent variable, we constructed and compared the predictive model by calculating the dependent variable by adjusting the numerical value to ascertain whether 12%, which is the standard rate of return used in the industry, is a meaningful reference value. As a result, it was found that the hit ratio average of the predictive model constructed using the dependent variable calculated by the 12% standard rate of return was the best at 64.60%. In order to propose an optimal prediction model based on the determined dependent variables and 7 independent variables, we construct a prediction model by applying the five methodologies of discriminant analysis, logistic regression analysis, decision tree, artificial neural network, and genetic algorithm linear model we tried to compare them. To do this, 10 sets of training data and testing data were extracted using 10 fold validation method. After building the model using this data, the hit ratio of each set was averaged and the performance was compared. As a result, the hit ratio average of prediction models constructed by using discriminant analysis, logistic regression model, decision tree, artificial neural network, and genetic algorithm linear model were 64.40%, 65.12%, 63.54%, 67.40%, and 60.51%, respectively. It was confirmed that the model using the artificial neural network is the best. Through this study, it is proved that it is effective to utilize 7 independent variables and artificial neural network prediction model in the future NPL market. The proposed model predicts that the 12% return of new things will be achieved beforehand, which will help the special purpose companies make investment decisions. Furthermore, we anticipate that the NPL market will be liquidated as the transaction proceeds at an appropriate price.

A Data-based Sales Forecasting Support System for New Businesses (데이터기반의 신규 사업 매출추정방법 연구: 지능형 사업평가 시스템을 중심으로)

  • Jun, Seung-Pyo;Sung, Tae-Eung;Choi, San
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.1-22
    • /
    • 2017
  • Analysis of future business or investment opportunities, such as business feasibility analysis and company or technology valuation, necessitate objective estimation on the relevant market and expected sales. While there are various ways to classify the estimation methods of these new sales or market size, they can be broadly divided into top-down and bottom-up approaches by benchmark references. Both methods, however, require a lot of resources and time. Therefore, we propose a data-based intelligent demand forecasting system to support evaluation of new business. This study focuses on analogical forecasting, one of the traditional quantitative forecasting methods, to develop sales forecasting intelligence systems for new businesses. Instead of simply estimating sales for a few years, we hereby propose a method of estimating the sales of new businesses by using the initial sales and the sales growth rate of similar companies. To demonstrate the appropriateness of this method, it is examined whether the sales performance of recently established companies in the same industry category in Korea can be utilized as a reference variable for the analogical forecasting. In this study, we examined whether the phenomenon of "mean reversion" was observed in the sales of start-up companies in order to identify errors in estimating sales of new businesses based on industry sales growth rate and whether the differences in business environment resulting from the different timing of business launch affects growth rate. We also conducted analyses of variance (ANOVA) and latent growth model (LGM) to identify differences in sales growth rates by industry category. Based on the results, we proposed industry-specific range and linear forecasting models. This study analyzed the sales of only 150,000 start-up companies in Korea in the last 10 years, and identified that the average growth rate of start-ups in Korea is higher than the industry average in the first few years, but it shortly shows the phenomenon of mean-reversion. In addition, although the start-up founding juncture affects the sales growth rate, it is not high significantly and the sales growth rate can be different according to the industry classification. Utilizing both this phenomenon and the performance of start-up companies in relevant industries, we have proposed two models of new business sales based on the sales growth rate. The method proposed in this study makes it possible to objectively and quickly estimate the sales of new business by industry, and it is expected to provide reference information to judge whether sales estimated by other methods (top-down/bottom-up approach) pass the bounds from ordinary cases in relevant industry. In particular, the results of this study can be practically used as useful reference information for business feasibility analysis or technical valuation for entering new business. When using the existing top-down method, it can be used to set the range of market size or market share. As well, when using the bottom-up method, the estimation period may be set in accordance of the mean reverting period information for the growth rate. The two models proposed in this study will enable rapid and objective sales estimation of new businesses, and are expected to improve the efficiency of business feasibility analysis and technology valuation process by developing intelligent information system. In academic perspectives, it is a very important discovery that the phenomenon of 'mean reversion' is found among start-up companies out of general small-and-medium enterprises (SMEs) as well as stable companies such as listed companies. In particular, there exists the significance of this study in that over the large-scale data the mean reverting phenomenon of the start-up firms' sales growth rate is different from that of the listed companies, and that there is a difference in each industry. If a linear model, which is useful for estimating the sales of a specific company, is highly likely to be utilized in practical aspects, it can be explained that the range model, which can be used for the estimation method of the sales of the unspecified firms, is highly likely to be used in political aspects. It implies that when analyzing the business activities and performance of a specific industry group or enterprise group there is political usability in that the range model enables to provide references and compare them by data based start-up sales forecasting system.

Development of Information Extraction System from Multi Source Unstructured Documents for Knowledge Base Expansion (지식베이스 확장을 위한 멀티소스 비정형 문서에서의 정보 추출 시스템의 개발)

  • Choi, Hyunseung;Kim, Mintae;Kim, Wooju;Shin, Dongwook;Lee, Yong Hun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.111-136
    • /
    • 2018
  • In this paper, we propose a methodology to extract answer information about queries from various types of unstructured documents collected from multi-sources existing on web in order to expand knowledge base. The proposed methodology is divided into the following steps. 1) Collect relevant documents from Wikipedia, Naver encyclopedia, and Naver news sources for "subject-predicate" separated queries and classify the proper documents. 2) Determine whether the sentence is suitable for extracting information and derive the confidence. 3) Based on the predicate feature, extract the information in the proper sentence and derive the overall confidence of the information extraction result. In order to evaluate the performance of the information extraction system, we selected 400 queries from the artificial intelligence speaker of SK-Telecom. Compared with the baseline model, it is confirmed that it shows higher performance index than the existing model. The contribution of this study is that we develop a sequence tagging model based on bi-directional LSTM-CRF using the predicate feature of the query, with this we developed a robust model that can maintain high recall performance even in various types of unstructured documents collected from multiple sources. The problem of information extraction for knowledge base extension should take into account heterogeneous characteristics of source-specific document types. The proposed methodology proved to extract information effectively from various types of unstructured documents compared to the baseline model. There is a limitation in previous research that the performance is poor when extracting information about the document type that is different from the training data. In addition, this study can prevent unnecessary information extraction attempts from the documents that do not include the answer information through the process for predicting the suitability of information extraction of documents and sentences before the information extraction step. It is meaningful that we provided a method that precision performance can be maintained even in actual web environment. The information extraction problem for the knowledge base expansion has the characteristic that it can not guarantee whether the document includes the correct answer because it is aimed at the unstructured document existing in the real web. When the question answering is performed on a real web, previous machine reading comprehension studies has a limitation that it shows a low level of precision because it frequently attempts to extract an answer even in a document in which there is no correct answer. The policy that predicts the suitability of document and sentence information extraction is meaningful in that it contributes to maintaining the performance of information extraction even in real web environment. The limitations of this study and future research directions are as follows. First, it is a problem related to data preprocessing. In this study, the unit of knowledge extraction is classified through the morphological analysis based on the open source Konlpy python package, and the information extraction result can be improperly performed because morphological analysis is not performed properly. To enhance the performance of information extraction results, it is necessary to develop an advanced morpheme analyzer. Second, it is a problem of entity ambiguity. The information extraction system of this study can not distinguish the same name that has different intention. If several people with the same name appear in the news, the system may not extract information about the intended query. In future research, it is necessary to take measures to identify the person with the same name. Third, it is a problem of evaluation query data. In this study, we selected 400 of user queries collected from SK Telecom 's interactive artificial intelligent speaker to evaluate the performance of the information extraction system. n this study, we developed evaluation data set using 800 documents (400 questions * 7 articles per question (1 Wikipedia, 3 Naver encyclopedia, 3 Naver news) by judging whether a correct answer is included or not. To ensure the external validity of the study, it is desirable to use more queries to determine the performance of the system. This is a costly activity that must be done manually. Future research needs to evaluate the system for more queries. It is also necessary to develop a Korean benchmark data set of information extraction system for queries from multi-source web documents to build an environment that can evaluate the results more objectively.

A Study on Qulity Perceptions and Satisfaction for Medical Service Marketing (의료서비스 마케팅을 위한 품질지각과 만족에 관한 연구)

  • Yoo, Dong-Keun
    • Journal of Korean Academy of Nursing Administration
    • /
    • v.2 no.1
    • /
    • pp.97-114
    • /
    • 1996
  • INSTRODUCTION Service quality is, unlike goods quality, an abstract and elusive constuct. Service quality and its requirements are not easily understood by consumers, and also present some critical research problems. However, quality is very important to marketers and consumers in that it has many strategic benefits in contributing to profitability of marketing activities and consumers' problem-solving activities. Moreover, despite the phenomenal growth of medical service sector, few researchers have attempted to define and model medical service quality. Especially, little research has focused on the evaluation of medical service quality and patient satisfaction from the perspectives of both the provider and the patient. As competition intensifies and patients are demanding higher quality of medical service, medical service quality and patient satisfaction has emerged as a critical research topic. The major purpose of this article is to explore the concept of medical service quality and its evaluation from both nurse and patient perspectives. This article attempts to achieve its purpose by (1)classfying critical service attibutes into threecategories(satisfiers, hygiene factors, and performance factors). (2)measuring the relative importance of need criteria, (3)evaluating SERVPERF model and SERVQUAL model in medical service sector, and (4)identifying the relationship between perceived quality and overall patient satisfaction. METHOD Data were gathered from a sample of 217 patients and 179 nurses in Seoul-area general hospitals. From the review of previous literature, 50 survey items representing various facets of the medical service quality were developed to form a questionnaire. A five-point scale ranging from "Strongly Agree"(5) to "Strongly Disagree"(1) accompanied each statement(expectation statements, perception statements, and importance statements). To measure overall satisfaction, a seven-point scale was used, ranging from "Very Satisfied"(7) to "Very Dissatisfied"(1) with no verbal labels for scale points 2 through 6 RESULTS In explaining the relationship between perceived performance and overall satisfaction, only 31 variables out of original 50 survey items were proven to be statistically significant. Hence, a penalty-reward analysis was performed on theses 31 critical attributes to find out 17 satisfiers, 8 hygiene factors, and 4 performance factors in patient perspective. The role(category) of each service quality attribute in relation to patient satisfaction was com pared across two groups, that is, patients and nurses. They were little overlapped, suggesting that two groups had different sets of 'perceived quality' attributes. Principal components factor analyses of the patients' and nurses' responses were performed to identify the underlying dimensions for the set of performance(experience) statements. 28 variables were analyzed by using a varimax rotation after deleting three obscure variables. The number of factors to be extracted was determined by evaluating the eigenvalue scores. Six factors wereextracted, accounting for 57.1% of the total variance. Reliability analysis was performed to refine the factors further. Using coefficient alpha, scores of .84 to .65 were obtained. Individual-item analysis indicated that all statements in each of the factors should remain. On 26 attributes of 31 critical service quality attributes, there were gaps between actual patient's importance of need criteria and nurse perceptions of them. Those critical attributes could be classified into four categories based on the relative importance of need criteria and perceived performance from the perspective of patient. This analysis is useful in developing strategic plans for performance improvement. (1) top priorities(high importance and low performance) (in this study)- more health-related information -accuracy in billing - quality of food - appointments at my convenience - information about tests and treatments - prompt service of business office -adequacy of accommodations(elevators, etc) (2) current strengths(high importance and high performance) (3)unnecessary strengths(low importance and high performance) (4) low priorities(low importance and low performance) While 26 service quality attributes of SERPERF model were significantly related to patient satisfation, only 13 attributes of SERVQUAL model were significantly related. This result suggested that only experience-based norms(SERVPERF model) were more appropriate than expectations to serve as a benchmark against which service experiences were compared(SERVQUAL model). However, it must be noted that the degree of association to overall satisfaction was not consistent. There were some gaps between nurse percetions and patient perception of medical service performance. From the patient's viewpoint, "personal likability", "technical skill/trust", and "cares about me" were most significant positioning factors that contributed patient satisfaction. DISCUSSION This study shows that there are inconsistencies between nurse perceptions and patient perceptions of medical service attributes. Also, for service quality improvement, it is most important for nurses to understand what satisfiers, hygiene factors, and performance factors are through two-way communications. Patient satisfaction should be measured, and problems identified should be resolved for survival in intense competitive market conditions. Hence, patient satisfaction monitoring is now becoming a standard marketing tool for healthcare providers and its role is expected to increase.

  • PDF

Hydro-Mechanical Modelling of Fault Slip Induced by Water Injection: DECOVALEX-2019 TASK B (Step 1) (유체 주입에 의한 단층의 수리역학적 거동 해석: 국제공동연구 DECOVALEX-2019 Task B 연구 현황(Step 1))

  • Park, Jung-Wook;Park, Eui-Seob;Kim, Taehyun;Lee, Changsoo;Lee, Jaewon
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.400-425
    • /
    • 2018
  • This study presents the research results and current status of the DECOVALEX-2019 project Task B. Task B named 'Fault slip modelling' is aiming at developing a numerical method to simulate the coupled hydro-mechanical behavior of fault, including slip or reactivation, induced by water injection. The first research step of Task B is a benchmark simulation which is designed for the modelling teams to familiarize themselves with the problem and to set up their own codes to reproduce the hydro-mechanical coupling between the fault hydraulic transmissivity and the mechanically-induced displacement. We reproduced the coupled hydro-mechanical process of fault slip using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. A methodology to formulate the hydro-mechanical coupling relations of two different hydraulic aperture models and link the solid element of TOUGH2 and the interface element of FLAC3D was suggested. In addition, we developed a coupling module to update the changes in geometric features (mesh) and hydrological properties of fault caused by water injection at every calculation step for TOUGH-FLAC simulator. Then, the transient responses of the fault, including elastic deformation, reactivation, progressive evolutions of pathway, pressure distribution and water injection rate, to stepwise pressurization were examined during the simulations. The results of the simulations suggest that the developed model can provide a reasonable prediction of the hydro-mechanical behavior related to fault reactivation. The numerical model will be enhanced by continuing collaboration and interaction with other research teams of DECOLVAEX-2019 Task B and validated using the field data from fault activation experiments in a further study.

A study on the CRM strategy for medium and small industry of distribution (중소유통업체의 CRM 도입방안에 관한 연구)

  • Kim, Gi-Pyoung
    • Journal of Distribution Science
    • /
    • v.8 no.3
    • /
    • pp.37-47
    • /
    • 2010
  • CRM refers to the operating activities that always maintain and promote good relationship with customers to ultimately maximize the company's profits by understanding the value of customers to meet their demands, establishing a strategy which may maximize the Life Time Value and successfully operating the business by integrating the customer management processes. In our country, many big businesses are introducing CRM initiatively to use it in marketing strategy however, most medium and small sized companies do not understand CRM clearly or they feel difficult to introduce it due to huge investment needed. This study is intended to present CRM promotion strategy and activities plan fit for the medium and small sized companies by analyzing the success factors of the leading companies those have already executed CRM by surveying the precedents to make the distributors out of the industries have close relation with consumers to overcome their weakness in scale and strengthen their competitiveness in such a rapidly changing and fiercely competing market. There are 5 stages to build CRM such as the recognition of the needs of CRM establishment, the establishment of CRM integrated database, the establishment of customer analysis and marketing strategy through data mining, the practical use of customer analysis through data mining and the implementation of response analysis and close loop process. Through the case study of leading companies, CRM is needed in types of businesses where the companies constantly contact their customers. To meet their needs, they assertively analyze their customer information. Through this, they develop their own CRM programs personalized for their customers to provide high quality service products. For customers helping them make profits, the VIP marketing strategy is conducted to keep the customers from breaking their relationships with the companies. Through continuous management, CRM should be executed. In other words, through customer segmentation, the profitability for the customers should be maximized. The maximization of the profitability for the customers is the key to CRM. These are the success factors of the CRM of the distributors in Korea. Firstly, the top management's will power for CS management is needed. Secondly, the culture across the company should be made to respect the customers. Thirdly, specialized customer management and CRM workers should be trained. Fourthly, CRM behaviors should be developed for the whole staff members. Fifthly, CRM should be carried out through systematic cooperation between related departments. To make use of the case study for CRM, the company should understand the customer and establish customer management programs to set the optimal CRM strategy and continuously pursue it according to a long-term plan. For this, according to collected information and customer data, customers should be segmented and the responsive customer system should be designed according to the differentiated strategy according to the class of the customers. In terms of the future CRM, integrated CRM is essential where the customer information gathers together in one place. As the degree of customers' expectation increases a lot, the effective way to meet the customers' expectation should be pursued. As the IT technology improved rapidly, RFID (Radio Frequency Identification) appears. On a real-time basis, information about products and customers is obtained massively in a very short time. A strategy for successful CRM promotion should be improving the organizations in charge of contacting customers, re-planning the customer management processes and establishing the integrated system with the marketing strategy to keep good relation with the customers according to a long-term plan and a proper method suitable to the market conditions and run a company-wide program. In addition, a CRM program should be continuously improved and complemented to meet the company's characteristics. Especially, a strategy for successful CRM for the medium and small sized distributors should be as follows. First, they should change their existing recognition in CRM and keep in-depth care for the customers. Second, they should benchmark the techniques of CRM from the leading companies and find out success points to use. Third, they should seek some methods best suited for their particular conditions by achieving the ideas combining their own strong points with marketing. Fourth, a CRM model should be developed that will promote relationship with individual customers just like the precedents of small sized businesses in Switzerland through small but noticeable events.

  • PDF

Agency Costs of Clothing Companies with Famous Brand (유명 의류 상호 기업의 대리인 비용에 관한 연구)

  • Gong, Kyung-Tae
    • Management & Information Systems Review
    • /
    • v.36 no.4
    • /
    • pp.21-32
    • /
    • 2017
  • Motivated by the recent cases of negligent social responsibility as manifested by foreign luxury fashion brands in Korea, this study investigates whether agency costs depend on the sustainability of different types of corporate governance. Agency costs refer either to vertical costs arising from the relationship between stockholders and managers, or to horizontal costs associated with the potential conflicts between majority and minority stockholders. The firms with luxury fashion brand could spend large sums of money on maintenance of magnificent brand image, thereby increasing the agency cost. On the contrary, the firms may hold down wasteful spending to report a gaudily financial achievement. This results in mitigation of the agency cost. Agency costs are measured by the value of the principal component. First, three ratios are constructed: asset turnover, operating expense to sales, and earnings before interest, tax, and depreciation. Then, the scores of each of these ratios for individual firms in the sample are differenced from the ratios for the benchmark firm of S-OIL. S-OIL was designated as the best superior governance model firm for 2013 by CGS. We perform regression analysis of each agency cost index, luxury fashion brand dummy and a set of control variables. The regression results indicate that the agency costs of the firms with luxury fashion brand exceed those of control group in the fashion industry in the part of operating expenses, but the agency cost falls short of those of control group in the part of EBITD, thus the aggregate agency costs are not differential of those of the control group. In sensitivity test, the results are same that the agency cost of the firms are higher than those of the matching control group with PSM(propensity matching method). These results are corroborated by an additional analysis comparing the group of the companies with the best brands with the control group. The results raise doubts about the effectiveness of management of the firms with luxury fashion brand. This study has a limitation that the research has performed only for 2013 and this paper suggests that there is room for improvement in the current research methodology.

  • PDF

The Effect of the Extended Benefit Duration on the Aggregate Labor Market (실업급여 지급기간 변화의 효과 분석)

  • Moon, Weh-Sol
    • KDI Journal of Economic Policy
    • /
    • v.32 no.1
    • /
    • pp.131-169
    • /
    • 2010
  • I develop a matching model in which risk-averse workers face borrowing constraints and make a labor force participation decision as well as a job search decision. A sharp distinction between unemployment and out of the labor force is made: those who look for work for a certain period but find no job are classified as the unemployed and those who do not look for work are classified as those out of the labor force. In the model, the job search decision consists of two steps. First, each individual who is not working obtains information about employment opportunities. Second, each individual who decides to search has to take costly actions to find a job. Since individuals differ with respect to asset holdings, they have different reservation job-finding probabilities at which an individual is indifferent between searching and not searching. Individuals, who have large asset holdings and thereby are less likely to participate in the labor market, have high reservation job-finding probability, and they are less likely to search if they have less quality of information. In other words, if individuals with large asset holdings search for job, they must have very high quality of information and face very high actual job-finding probability. On the other hand, individuals with small asset holdings have low reservation job-finding probability and they are likely to search for less quality of information. They face very low actual job-finding probability and seem to remain unemployed for a long time. Therefore, differences in the quality of information explain heterogeneous job search decisions among individuals as well as higher job finding probability for those who reenter the labor market than for those who remain in the labor force. The effect of the extended maximum duration of unemployment insurance benefits on the aggregate labor market and the labor market flows is investigated. The benchmark benefit duration is set to three months. As maximum benefit duration is extended up to six months, the employment-population ratio decreases while the unemployment rate increases because individuals who are eligible for benefits have strong incentives to remain unemployed and decide to search even if they obtain less quality of information, which leads to low job-finding probability and then high unemployment rate. Then, the vacancy-unemployment ratio decreases and, in turn, the job-finding probability for both the unemployed and those out of the labor force decrease. Finally, the outflow from nonparticipation decreases with benefit duration because the equilibrium job-finding probability decreases. As the job-finding probability decreases, those who are out of the labor force are less likely to search for the same quality of information. I also consider the matching model with two states of employment and unemployment. Compared to the results of the two-state model, the simulated effects of changes in benefit duration on the aggregate labor market and the labor market flows are quite large and significant.

  • PDF

Assessing Impacts of Global Warming on Rice Growth and Production in Korea (지구온난화에 따른 벼 생육 및 생산성 변화 예측)

  • Shim, Kyo-Moon;Roh, Kee-An;So, Kyu-Ho;Kim, Gun-Yeob;Jeong, Hyun-Cheol;Lee, Deog-Bae
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.121-131
    • /
    • 2010
  • This study was carried out to evaluate spatial variations in rice production areas by simulating rice growth and yield with CERES-Rice growth model under GCM $2{\times}CO_2$ climate change scenarios. A modified window version(v4.0) of CERES-Rice was used to simulate the growth and development of three varieties, representing early, medium, and late maturity classes. Simulated growth and yield data of the three cultivars under the climate for 1971 to 2000 was set as a reference. Compared with the current normal(1971 to 2000), heading period from transplanting to heading date decreased by 7~8 days for the climate in $2^{\circ}C$ increase over normal, and 16~18 days for the climate in UKMO with all maturity classes, while change of ripening period from heading to harvesting date was different with maturity classes. That is, physical maturity was shortened by 1~3 days for early maturity class and 14~18 days for late maturity class under different climate change scenarios. Rice yield was in general reduced by 4.5%, 8.2%, 9.9%, and 14.9% under the climate in $2^{\circ}C$, $3^{\circ}C$, $4^{\circ}C$, and about $5^{\circ}C$ increase, respectively. The yield reduction was due to increased high temperature-induced spikelet sterility and decreased growth period. The results show that predicted climate changes are expected to bring negative effects in rice production in Korea. So, it is required for introduction of new agricultural technologies to adapt to climate change, which are, for example, developing new cultivars, alternations of planting dates and management practices, and introducing irrigation systems, etc.