• Title/Summary/Keyword: bench-scale experiment

Search Result 54, Processing Time 0.031 seconds

Characteristics of Microfauna in Biological Treatment of Landfil Leachate with Reactor Including Porous Media (다공성 Media가 조여된 반응조를 이용한 매립지 침출수의 호기성 생물학적 처리시 미소생물상의 특성)

  • 홍성철;박연규
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.61-69
    • /
    • 1996
  • The combined wastewater of municipal landfill leachate and municipal sewage was treated using several sets of bench-scale aerated circulating system including porous media. Investigated items in this experiment were the dominant protozoa and metazoa in this system, the variation of microfauna relationship between operating condition and dominant genera. Also considered the factors determining dominant genera and their role. The outcome of this research is as follows; 1. Aspidisca, Vorticella, Truhellophyllum, Lecane, Philodina, Cyclops were mainly appeared prior to combinding leachate, while Trachelocerca, Bodo, Glaucoma were the dominant genera after combinding leachate. 2. As to metazoa, Nematode and Philodina were not influenced by 5oA leachate mixing ratio, meanwhile Crustacea has high sensitivity for increased leachate mixing ratio and it was not appeared in 5% leachate mixing ratio. 3. The appropriate treatability could'nt be expected at the above 10% leachate mixing ratio. Especially, in the condition of 20% leachate mixing ratio, all of the microfauna were affected damage seriously on their existence. Meanwhile hydraulic retention time, substrate loading rate and slut자e production rate didn't give notable influence on increasing the number of microfauna. 4. As to protozoa, saprozoic and holozoic species were appeared commonly and polysaprobic species were dominent. 5. Filamentous organsms were nearly not affected by leachate mixing. It seems that they could live without any trouble at the 10% leachate mixing ratio, if the substrate is sufficient. 6. Diversity of microfauna had a reducing trernd as the sewage was mixed with leachate.

  • PDF

Neutralization of Synthetic Alkaline Wastewater with CO2 in a Semi-batch Jet Loop Reactor (Semi-batch Jet Loop Reactor에서 연소 배가스중 CO2를 이용한 알칼리 폐수 중화)

  • Son, Min-Ki;Sung, Ho-Jin;Lee, Jea-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.17-22
    • /
    • 2013
  • In this study, we tested the absorption of $CO_2$ in combustion gas into an alkaline wastewater to simultaneously control $CO_2$ and wastewater. During the experiment, we investigated the effects of operating parameters on neutralization characteristics of the wastewater by using $CO_2$ in a bench-scale semi-batch jet loop reactor (0.1 m diameter and 1.0 m in height). The operating parameters investigated in the study are gas flow rate of 1.0-2.0 L/min, liquid recirculation flow rate of 4-32 L/min, and liquid temperature of $20-25^{\circ}C$. It was shown that the initial pH of wastewater rapidly decreased with increased gas flow rate for a given liquid recirculation flow rate. This was due to the increase in the gas holdup and the interfacial area at higher gas flow rate in the reactor. At constant gas flow rate, the time required to neutralize the wastewater initial pH of 10.1 decreased with liquid recirculation flow rate ($Q_L$), reached a minimum value in the range of $Q_L$ = 16-24 L/min, and then increased with further increase in $Q_L$. Further, the time required to neutralize the wastewater was shortened at higher temperatures.

Neutralization of Synthetic Alkaline Wastewater with CO2 in a Semi-batch Jet Loop Reactor (Semi-batch Jet Loop Reactor에서 연소 배가스중 CO2를 이용한 알칼리 폐수 중화)

  • Son, Min-Ki;Sung, Ho-Jin;Lee, Jea-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.38-43
    • /
    • 2013
  • In this study, we tested the absorption of $CO_2$ in combustion gas into an alkaline wastewater to simultaneously control $CO_2$ and wastewater. During the experiment, we investigated the effects of operating parameters on neutralization characteristics of the wastewater by using $CO_2$ in a bench-scale semi-batch jet loop reactor (0.1 m diameter and 1.0 m in height). The operating parameters investigated in the study are gas flow rate of 1.0-2.0 L/min, liquid recirculation flow rate of 4-32 L/min, and liquid temperature of $20-25^{\circ}C$. It was shown that the initial pH of wastewater rapidly decreased with increased gas flow rate for a given liquid recirculation flow rate. This was due to the increase in the gas holdup and the interfacial area at higher gas flow rate in the reactor. At constant gas flow rate, the time required to neutralize the wastewater initial pH of 10.1 decreased with liquid recirculation flow rate ($Q_L$), reached a minimum value in the range of $Q_L$ = 16-24 L/min, and then increased with further increase in $Q_L$. Further, the time required to neutralize the wastewater was shortened at higher temperatures.

Hydraulic Shock Load Response of Activated Sludge Process (활성슬러지공정의 수리학적 충격부하 반응)

  • Whang, Gye Dae;Kim, Min Ho;Ko, Sae;Cho, Chul Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.3
    • /
    • pp.67-78
    • /
    • 1997
  • The objective of study was to examine to transient response of hydraulic shock loading in activated sludge process for treatment of municipal sewage. The general experiment approach was to operate the system under steady-state(pre-shock), then to apply step changes during 24hours in fourfold hydraulic shock loading at the same organic loading. Performance was assessed in both the transient state and the new steady-state(post-shock). Three bench scale activated sludge reactors were operated to investigate the effect of fourfold hydraulic shock loading on TSS and COD removal efficiency. In activated sludge reactors operated with 13hours and 7hours of HRT, effluent quality of all reactors was not changed for few effects, and also showed no foaming and no sludge bulking. Those results are the same as sludge withdrawn reactors. The effect of fourfold hydraulic shock loading on the activated sludge reactors operated with 3hours of HRT was most severe. The effluent quality was deteriorated significantly and generate foaming in reactors. Less than 24hours after the fourfold shock loading applied, the activated sludge system seemed to attain a new steady-state condition as show by effluent.

  • PDF

Experimental Study on Reduction Effects of Non-Point Pollutants by Improvement of Infiltration Capacity of Soil Filter Strip (토양여과대의 침투능 향상을 통한 비점오염물질 저감 효과에 관한 실험적 연구)

  • Woo, Su-Hye;Choi, I-Song;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.2
    • /
    • pp.264-272
    • /
    • 2007
  • Runoff of non-point pollutants has affected bad influence to water quality of river as reaching within short time. For this reason, reducing them prior to reaching aquatic systems or treating them after collection from discharge process of pollutants are desirable for efficient treatment of pollutants. This study was carried out to develop an ecotechnological method to prevent further aggravation of water quality by non-point source through vegetation filter strips. This study has placed a focus on improving infiltration capacity of soil for the optimum condition of vegetation filter strips. Therefore, we used titled soil filter strips instead of vegetation filter strips in this study. The three types of soil tilter strips were used in a bench scale experiment before applying to the field. The reduction efficiency of pollutants in soil filter strips (SS $84.5{\sim}92.5%$, BOD $67.9{\sim}80.6%$, T-N $43.4{\sim}76.6%$, T-P $40.6{\sim}87.4%$, Cu $28.3{\sim}48.1%$ Fe $92.1{\sim}97.7%$, Pb $81.4{\sim}97.3%$) was much higher than that of the controled group. And non-point pollutants reduction efficiency by soil filter strip's forms was estimated to be distinguishing in order of bio material, mixture of sand and gravel and lastly the whole gravel. In the event, the whole reduction efficiency of pollutants on the soil filter strips disclosed good results.

Experimental Evaluation of Developed Ultra-low NOx Coal Burner Using Gas in a Bench-scale Single Burner Furnace (Bench-scale 연소로에서 가스 혼소를 통한 초 저 NOx 석탄 버너 개발 연구)

  • Chae, Taeyoung;Lee, Jaewook;Lee, Youngjae;Yang, Won
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.117-122
    • /
    • 2022
  • This study developed and tested an ultra-low NOx burner in an 80 kW combustion furnace. The experiment was conducted in an 80 kW single burner combustion furnace with changing the swirl numbers, total equivalence ratios, and primary/secondary oxidizer ratios. In this study, liquefied natural gas (LNG) was used as an auxiliary fuel to significantly reduce NOx production. In a thermal power plant, the amount of NOx generated during coal combustion is about 300 ppm. However, using the burner tested in this study, it was possible to reduce the amount of NOx generated via LNG co-firing to 40 ppm. If the input amount of the primary oxidizer is enough for the gas to be completely combusted and the gas and coal are added simultaneously, the combusted gas forms a high-temperature region at the burner outlet and volatilizes the coal. As a result, the N contained in the devolatilized coal is discharged. Therefore, when the coal is subsequently burned, the amount of NOx produced decreases because there is almost no N remaining in the coal. If a thermal power plant burner is developed based on the results of this study, it is expected that the NOx generation will be significantly lower in the early stage of combustion.

Large Scale Incremental Reasoning using SWRL Rules in a Distributed Framework (분산 처리 환경에서 SWRL 규칙을 이용한 대용량 점증적 추론 방법)

  • Lee, Wan-Gon;Bang, Sung-Hyuk;Park, Young-Tack
    • Journal of KIISE
    • /
    • v.44 no.4
    • /
    • pp.383-391
    • /
    • 2017
  • As we enter a new era of Big Data, the amount of semantic data has rapidly increased. In order to derive meaningful information from this large semantic data, studies that utilize the SWRL(Semantic Web Rule Language) are being actively conducted. SWRL rules are based on data extracted from a user's empirical knowledge. However, conventional reasoning systems developed on single machines cannot process large scale data. Similarly, multi-node based reasoning systems have performance degradation problems due to network shuffling. Therefore, this paper overcomes the limitations of existing systems and proposes more efficient distributed inference methods. It also introduces data partitioning strategies to minimize network shuffling. In addition, it describes a method for optimizing the incremental reasoning process through data selection and determining the rule order. In order to evaluate the proposed methods, the experiments were conducted using WiseKB consisting of 200 million triples with 83 user defined rules and the overall reasoning task was completed in 32.7 minutes. Also, the experiment results using LUBM bench datasets showed that our approach could perform reasoning twice as fast as MapReduce based reasoning systems.

A study on treatment of emulsified oil waste water in vessels by electrochemical treatment system (전기화학적 처리장치에 의한 유화된 선저폐수의 처리에 관한 연구)

  • Kwon K. S.;Jeong H. J.;Lee B. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.3
    • /
    • pp.45-53
    • /
    • 2003
  • Discharging untreated bilge to the ocean is a cause of marine pollution. In general, bilge water contains free and/or emulsified forms of oil. Free form of oil can easily be separated by gravimetric flotation and/or proper filtration processes. However, those simple physicochemical processes could not separate emulsified oil without adding proper chemicals. Electrolytic flotation is one of promising technologies able to fulfill the effluent standard requirement, which is below 15 ppm of oil content. In this research, Electrochemical process consisting of electrochemical flotation basin was studied for the treatment of emulsified oil. In order to estimate, the effectiveness of oil separation equipment influent concentration of oil and HRT(Hydraulic retention time) were considered. Also, lab-scale electrochemical process was designed and operated in the condition of various HRT, current density, and electrode gap. Through the research, following results were obtained. From the experiment of bench scale electrochemical treatment process, it was demonstrated that the emulsified oil was treated effectively and the removal efficiency of emulsified oil from wastewater was increased with HRT and current density.

  • PDF

A Study on the Combined Treatment of Municipal Solid Waste Landfill Leachate (도시폐기물매립지침출수의 병합처리에 관한 연구)

  • 김동민;이병인
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.45-55
    • /
    • 1996
  • An experimental research was conducted in order to study the combined treatment o of municipal landfill leachate and municipal sewage. The landfill leachate was that of Nanjido landfill site, and the municipal sewage was that of Chungnang municipal sewage treatment plant in Seoul. Several sets of bench~scale sequencing batch reactor(SBR) were used as e experimental apparatus. Specially investigated items in this experiment were the removal efficiency of substrate and the influence of treatment time. The experiment lasted for about 2 years. The result are as follows ; 1. The characteristics of leachate were pH 7.5~8.2, BOD 80~336mg/L, COD 908~1,460mg/L, NH3-N 1,409~2,330mg/L, T~P 2.7~7.lmg/L, Cl~3,540~4,085mg/L, a and heavy metals are a very small amount. And the characteristics of sewage were pH 6.9~7.3, BOD 78.4~129.3mg/L, COD 121.2~305.0mg/L, T~N 14.9~36.4mg/L, T-P 2.3~8.9mg/L. 2. The treatability of leachate alone was not treat well. So for the good treatment of leachate, it was necessary to deal with the pretreatment before bi이ogical treatment and a combined treatment of municipal sewage. 3. The various contents of the leachate were 5%, 10%, 30%, and 50%, and the removal efficiency of COD was 86.0%, 82.8%, 60.6%, and 31.7%. The maximum content of the leachate which could be sucessfully treated by SBR in the combined treatment was 10% of that of sewage. And the removal efficiency of COD increased n notably, as its treatment time increased. 4. The various contents of the electrolytic treated leachate were 5%, 10%, 30%, and 50%, and the removal efficiency of COD was 89.9%, 86.1%, 79.2%, and 69.8%. The maximum content of the leachate which could be sucessfully treated by SBR in the combined treatment was 30 % of that of sewage. And the removal efficiency of C COD increased notably, as its treatment time increased.

  • PDF

Hydrogenotrophic Sulfate Reduction in a Gas-Lift Bioreactor Operated at $9^{\circ}C$

  • Nevatalo, Laura M.;Bijmans, Martijn F. M.;Lens, Piet N. L.;Kaksonen, Anna H.;Puhakka, Jaakko A.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.3
    • /
    • pp.615-621
    • /
    • 2010
  • The viability of low-temperature sulfate reduction with hydrogen as electron donor was studied with a bench-scale gas-lift bioreactor (GLB) operated at $9^{\circ}C$. Prior to the GLB experiment, the temperature range of sulfate reduction of the inoculum was assayed. The results of the temperature gradient assay indicated that the inoculum was a psychrotolerant mesophilic enrichment culture that had an optimal temperature for sulfate reduction of $31^{\circ}C$, and minimum and maximum temperatures of $7^{\circ}C$ and $41^{\circ}C$, respectively. In the GLB experiment at $9^{\circ}C$, a sulfate reduction rate of 500-600 mg $l^{-1}d^{-1}$, corresponding to a specific activity of 173 mg ${SO_4}^{2-}g\;VSS^{-1}d^{-1}$, was obtained. The electron flow from the consumed $H_2$-gas to sulfate reduction varied between 27% and 52%, whereas the electron flow to acetate production decreased steadily from 15% to 5%. No methane was produced. Acetate was produced from $CO_2$ and $H_2$ by homoacetogenic bacteria. Acetate supported the growth of some heterotrophic sulfate-reducing bacteria. The sulfate reduction rate in the GLB was limited by the slow biomass growth rate at $9^{\circ}C$ and low biomass retention in the reactor. Nevertheless, this study demonstrated the potential sulfate reduction rate of psychrotolerant sulfate-reducing mesophiles at suboptimal temperature.