• Title/Summary/Keyword: bench-cut

Search Result 29, Processing Time 0.027 seconds

A case study additional slope failure caused by a bench failure (절토사면 소단부의 취약성으로 인한 붕괴 사례 연구)

  • Kim, Yong-Soo;Nah, Kwang-Hee;Shin, Chang-Gun;Shim, Jeong-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.777-780
    • /
    • 2005
  • The bench of cut-slope is necessary to stabilizing. But it is possible to be a weak zone in slope. When a small scale failure is occurred in a bench, it influence a large scale failure of slope. So when it is found out any unstable factor, weathering of rock, a direction of joint in a bench, if the bench is reinforced suitably, the holly failure is prevented in cut-slope

  • PDF

A Study on the Estimation of Load Distribution Factors Considering Excavation Methods and Initial Stress Conditions (굴착방법과 초기지압 조건을 고려한 하중분배율의 산정 연구)

  • Park, Yeon-Jun;Ryu, Il-Hyung
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.192-204
    • /
    • 2011
  • In this study, 3-D analyses were conducted while taking every construction stage into account. Then 2-D analyses were conducted which yield the same results with the 3-D results. The crown settlement normalized by the ultimate value was compared during the process to overcome the discrepancy caused by different dimensions. When a bench or a core is left uncut to give extra support to the face and eventually the whole excavation boundary, this extra supporting effect also has to be included in the analysis. In this study, this effect is also implemented in terms of the load distribution factor. When the length of the bench is very short compared to the diameter of the tunnel in such cases as in short bench cut or in mini-bench cut, the supporting effect of the face does not disappear even after the bench is completely excavated and supported since the face is still too close to the point of interest. The 4th load distribution factor was defined to stand for the advance of the face after the completion of the excavation cycle. The 4th load distribution factor turned out to be very useful in determining the load distribution factors when a tunnel is excavated by bench cut with various bench lengths under different initial conditions.

Application of a Hydraulic Rock Splitting System to Bench-Cut Field Experiments (수압암반절개시스템을 이용한 벤치컷 현장 적용 사례 연구)

  • Park, Jong Oh;Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.725-733
    • /
    • 2022
  • This study applied a hydraulic rock splitting system equipped with a hybrid packer to the bench-cut method. The hybrid packer system is an improvement of the packer developed in previous studies; it is designed efficiently to reduce vibration and noise during rock excavation by combining the two functions of inducing hydraulic fractures using injection pressure and then expanding and extending them using a rubber packer. Field experiments assessed the efficiency of rock excavation with respect to the injection conditions; the adjusted experimental conditions included the distance from the free surface and the test holes drilled at the top of the slope and the injection settings. Using a separation of 5 m left some unexcavated parts, but using a separation of 1 m left no unexcavated parts. The hydraulic fractures generated by the injection pressure developed generally parallel to the free surface and expanded and extended as the rubber packer expanded, thus facilitating bench-cut excavation. For hydraulic rock splitting to be broadly applicable to bench-cut rock excavation, it is important to accumulate results from many field experiments conducted under varying experimental conditions for various types of rockmass.

Wafer-level Fabrication of Ball Lens by Cross-cut and Reflow of Wafer-bonded Glass on Silicon

  • Lee, Dong-Whan;Oh, Jin-Kyung;Choi, Jun-Seok;Lee, Hyung-Jong;Chung, Woo-Nam
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.2
    • /
    • pp.163-169
    • /
    • 2010
  • Novel wafer-level fabrication of a glass ball-lens is realized for optoelectronic applications. A Pyrex wafer is bonded to a silicon wafer and cross-cut into a square-tile pattern, followed by wet-etching of the underlying silicon. Cubes of Pyrex on the undercut silicon are then turned into ball shapes by thermal reflow, and separated from the wafer by further etching of the silicon support. Radial variation and surface roughness are measured to be less than ${\pm}3\;{\mu}m$ and ${\pm}1\;nm$, respectively, for ball diameter of about $500\;{\mu}m$. A surface defect on the ball that is due to the silicon support is shown to be healed by using a silicon-optical-bench. Optical power-relay of the ball lens showed the maximum efficiency of 65% between two single-mode fibers on the silicon-optical-bench.

A Study of Aging of Oxygen Sensor (1) (산소센서의 열화에 관한 연구(1))

  • 손건석;윤승원;이귀영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.1
    • /
    • pp.85-91
    • /
    • 2000
  • Oxygen sensors taken from the aftertreatment systems of 4 vehicles which had been aged in domestic filed were examined for aging pattern using a idle engine bench. The sensors were then cut into each layers along their components and characterized for poisoning, surface area and morphology. This study shows that amplitude and mean value of aged sensors are seriously affected by high temperature and oil components of exhaust gas.

  • PDF

A Study fo rthe determination of optimum cutangle for the heavily jointed rock slope (절리가 심하게 발달된 암반사면의 최적 절취각 고찰)

  • 홍예성;조태진;한공창
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.166-174
    • /
    • 1996
  • Stability of rock slope is greatly affected by the geometry and strength of discontinuities developed in the rock mass. In this study an analytical method which is capable of analyzing the effect of relative orientation between the discontinuities and the slope face on the safety of slope by assessing their vector components was used to evaluate the stability and the maximum cut-angle for the proposed slope design. The results of computerized vector analysis revealed that slope area under investigation might be divided into 3 sections of different face directions. The safety factors for benches in each 3 sections were calculated using the limit-equilibrium theory. Then, by utilizing the concept of probabilistic risk analysis, the susceptibility of entire slope failure was estimated. Based on the distribution of safety factor in each bench, the maximum cut angle of each section could be selected differently ot achieve the permanent stability of the entire slope.

  • PDF