• 제목/요약/키워드: below-ground biomass

검색결과 41건 처리시간 0.022초

Above- and below-ground vegetative responses to prescribed fire regimes in a Chesapeake Bay tidal brackish marsh

  • Leonard, Cheryl A.;Ahn, Chang-Woo;Birch, Dixie
    • Journal of Ecology and Environment
    • /
    • 제33권4호
    • /
    • pp.351-361
    • /
    • 2010
  • The primary purposes for using fire are to enhance marsh vegetation to support waterfowl, and to manage invasive plant species. The study was conducted for two consecutive years in 2004 and 2005, investigating the effects of prescribed fire regimes on vegetation biomass in tidal brackish marsh areas of the Blackwater National Wildlife Refuge located on the eastern shore of Maryland, USA, that are under relatively similar environmental conditions. Four different burn regimes (i.e., annual burn, 3-5 year burn, 7-10 year burn, and no burn) were applied in the study. Above- and below-ground vegetation biomass samples as affected by the different burn regimes were harvested in each year for five plant species native to the marsh; Distichlis spicata, Spartina alterniflora, Schoenoplectus americanus, Spartina cynosuroides and Spartina patens. No significant difference was found either in total above-ground biomass or in above-ground biomass by species between burn regimes in 2004. However, more total above-ground biomass was produced in annual burn regime in 2005 than in the other burn regimes. There were no consistent effects of burning on vegetative biomass production by species, but it seemed D. spicata was somewhat benefited by prescribed burning for its biomass production. Moreover, the stem density for D. spicata under annual burn regime was significantly higher than that in the other burn regimes, showing some positive effects of burning on vegetation. The below-ground biomass was significantly greater in 2004 than in 2005, yet with no significant difference between burn regimes in either year. A longer-term monitoring is strongly recommended.

Assessing the Root Development and Biomass Allocation of Magnolia champaca under Various Mulching at Montane Rainforest Cameron Highlands, Pahang, Malaysia

  • Wahidullah Rahmani;Frahnaz Azizi;Mohamad, Azani Bin Alias
    • Journal of Forest and Environmental Science
    • /
    • 제39권2호
    • /
    • pp.96-104
    • /
    • 2023
  • The successful restoration program requires a comprehensive understanding of variables influencing seedling efficiency. Below-ground is hypothesized to have a major impact on seedling performance of species when planted in agriculture, and degraded areas with different types of mulching. This study investigated on Sg. Terla Forest Reserve in Cameron Highlands Pahang, Malaysia. In this study randomized complete block design (RCBD) was used. The excavation method was applied to study the root system development, above, and below ground biomass distributions under different types of mulching: coconut mulching (CM), oil palm mulching (OM), plastic mulching (PM) and control (CK). The root diameter, main root length, lateral root length, root coiling, and root direction toward to sun were recorded. The results in this study indicate that mulching had significant effect on root diameter, main root length, and root distributions among treatments while for lateral root length, root: shoot ratio, dry biomass distributions, and above and below ground biomass did not showed significant effect among treatments. The highest values for root diameter, lateral root length, main root length, root distributions, dry biomass distributions and above and below ground biomass were showed in CM treatments. However 75% of root coiling was observed in seedlings between treatments.

독일가문비나무(Picea abies [L.] Karst)의 지상부(地上部)와 지하부(地下部) 생체량(生體量)에 관(關)한 연구(硏究) : 흉고직경(胸高直徑)에 의한 뿌리생체량(生體量) 추정(推定) (Relationship Between Above-and Below-Ground Biomass for Norway Spruce (Picea abies) : Estimating Root System Biomass from Breast Height Diameter)

  • 이도형
    • 한국산림과학회지
    • /
    • 제90권3호
    • /
    • pp.338-345
    • /
    • 2001
  • 본 연구는 독일가문비나무의 지하부인 뿌리구조와 지상부인 수관과의 상호관계를 밝혀, 어렵게 뿌리를 굴취하거나 침엽 생체량을 측정하지 않고도 수고와 흉고직경에 의한 상대적인 뿌리와 침엽 생체량 추정을 위한 회귀식을 구하기 위하여 실시하였다. 독일 중부 Harz 지방의 Barbis 임분에서 30~40년생의 우세목 5본과 준우세목 3본을 선발한 후 조사목의 지상부에 대하여 수고, 흉고직경, 지하고, 침엽량, 가지량, 횡단면, 변재면 등을 조사하였다. 그리고 5본에 대해서는 지하부의 뿌리길이, 뿌리수, 뿌리무게, 뿌리횡단면 등을 수평과 수직뿌리로 구분하여 조사하였다. 조사된 염분에서 독일가문비나무의 지상부(수고, 흉고직경, 침엽량, 가지량 등)와 지하부(뿌리길이, 무게, 수, 횡단면 등) 생체량 사이에는 서로 밀접한 상관을 나타내었다. 측정이 용이한 흉고직경에 대한 지하부 뿌리생체량은 Y = 3.56X - 45.94의 관계식으로 결정계수가 0.96으로 매우 높은 상관관계를 나타내었다. 가지량, 침엽량과 수고에 있어서도 지하부 생체량과 높은 상관관계를 나타내었다. 본 연구에서 얻어진 회귀식은 30~40년생 독일 가문비나무 임분에서 흉고직경을 이용하여 지하부의 상대적인 뿌리 생체량을 추정하는데 유용하게 이용될 수 있을 것이다.

  • PDF

강원지역 1영급 금강소나무에 대한 천연림과 인공림의 지상부와 지하부 상관관계 (Correlation of Above- and Below-ground Biomass Between Natural and Planted Stands of Pinus densiflora for. erecta of One Age-class in Gangwon Province)

  • 나성준;김장수;우관수;김혜진;이도형
    • 한국산림과학회지
    • /
    • 제100권1호
    • /
    • pp.42-51
    • /
    • 2011
  • 본 연구는 강원지역 1영급 금강소나무를 대상으로 천연적으로 갱신된 임분과 인공식재에 의해 성립된 임분의 지상부와 지하부 생체량간 상호관계를 비교 분석하고, 성립방법과 생육환경이 상이한 1영급 금강소나무의 임목 생체량 추정에 적합한 회귀식을 구하기 위해 실시하였다. 두 지역에서 각각 생육중인 천연갱신된 임목과 인공조림된 임목을 각 10본씩 전체 40본을 굴취하여, 수고와 근원직경, 지상부 각 부위별 건중량을 측정하였으며, 지하부인 뿌리에 대하여 주근과 수평근으로 구분하여 각각 길이, 무게, 재적을 조사하였다. 지상부와 지하부 상관관계에서 임분의 성립방법과 생육환경에 따라 다소 차이가 있었지만, 천연림과 인공림 모두에서 수고를 제외한 지상부 인자들은 뿌리 길이를 제외한 대부분 인자들과 밀접한 상관을 나타내었다(p< 0.05). 특히 임목에 있어 측정이 용이한 근원 직경은 모든 조사 임분에서 지상부와 지하부가 높은 상관관계를 나타내어(p< 0.01) 각 지상부 생체량 뿐만 아니라 지하부 생체량 추정에 적합한 인자인 것으로 나타났다. 반면, 수고는 대부분의 지상부와 지하부 인자들과 낮은 상관을 보여, 강원지역 1영급 금강소나무의 임목 생체량 추정에 사용되는 변수로서 미흡한 것으로 나타났다. 또한 본 연구에서 얻어진 회귀식은 근원직경을 이용한 지상부 및 지하부의 생체량 추정에 기초적인 자료로 유용하게 이용될 수 있을 것이다.

Studies on Biomass for Young Abies koreana Wilson

  • Lee, Do-Hyung;Yoon, Jun-Hyuck;Woo, Kwan-Soo
    • 한국산림과학회지
    • /
    • 제96권2호
    • /
    • pp.138-144
    • /
    • 2007
  • This study was undertaken to compare the biomass of Abies koreana growing at two sites. A $10{\times}10m$ plot was established in each site of a natural stand in Mt. Jiri and a plantation in Gyeongsan nursery. Five trees of A. koreana were randomly selected in each site. The following traits were investigated from each tree : height, basal diameter, age, weight of stem, branches, and needles as above-ground traits and weight of total roots, horizontal roots, and vertical roots as below-ground traits. In Gyeongsan nursery, age of sample trees was negatively correlated with both height and weight of total stem, while height was highly correlated with weight of horizontal roots. There was high correlation between the basal diameter and weight of total stem, and between the basal diameter and weight of roots. In Mt. Jiri stand, most of the above-ground traits except age were significantly correlated with the below-ground traits. The linear regression equation between the cross section area of base (X) and the weight of total stem (Y) in Gyeongsan nursery was Y=12.66X-12.92, and correlation was significant ($R^2=0.89$). The linear regression equation between the cross section area of base(X) and the weight of total branches (Y) in Mt. Jiri stand was Y=25.51X+6.00, and correlation was highly significant ($R^2=1.0$).

강화 남부 조간대에 서식하는 칠면초(Suaeda japonica)의 연간 생장 및 생산 양상 (Growth Rate and Annual Production of Halo-phyte (Suaeda japonica) on Tidal Mud-flat, Southern Part of Ganghwa-Isl, Korea)

  • 황지원;이균우;박흥식
    • Ocean and Polar Research
    • /
    • 제44권2호
    • /
    • pp.127-137
    • /
    • 2022
  • This study examined the growth pattern and environmental factors affecting the growth of the halophyte, Suaeda japonica, which is prevalent on tidal flats in the west coast of Korea in order to calculate annual carbon production. Quantitative sampling was conducted every month for three years from 2018 to 2020 on salt marshes located on the southern coast of Ganghwa Island. In terms of annual density affected by the germination rate at first period, especially when air temperature for winter time was constantly below 0℃ for long periods of time, germination decreased and precipitation in summer also exerted an influence. In terms of annual growth with regard to length, the part below the ground grew rapidly in the beginning after budding, while the part above ground grew at a relatively steady rate at all times. With regard to biomass, the part below the ground also increased from April in a manner similar to length growth, but decreased drastically from September with leaves falling off and water loss occurring. The part above ground showed a rapid increase from the beginning of the rainy season. Size-frequency distribution revealed broader patterns after the rainy season as individual growth varied, but from September, it stopped at all year. High growth rates were recorded in the initial phase of growth after budding and growth was rapid, but growth declined in summer when biomass increased. The annual mean production based on growth rate was calculated at 352 gDWt/m2/yr, and the highest production was 519 gDWt/m2/yr in 2018, but it has decreased since 2019. Annual carbon production was at calculated 143.41 gC/m2/yr for Suaeda japonica in the vicinity of the southern coast of Ganghwa Island.

Biomass Structure and Dry Matter Dynamics in a Fire Influencing Montane Subtropical Humid Grassland, Western Ghats Southern India

  • Paulsamy, S;Manian, S.;Udaiyan, K.;Arumugasamy, K.;Nagarajan, N.;Kil, B.S.
    • The Korean Journal of Ecology
    • /
    • 제24권4호
    • /
    • pp.227-232
    • /
    • 2001
  • The biomass structure for three major components viz., the dominant grass, Chrysopogon zeylanicus Thw., the 'other grasses' and the'remaining species'and dry matter dynamics for total community were studied over a period of one year in an annual fire influenced subtropical humid grassland community in Western Ghats, India. The biomass of aboveground, belowground and litter compartments were high as in other humid grasslands and generally have positive correlation with rainfall, rainy days and relative humidity with the exception of litter parts. The above and belowground net primary productions (4,561 and 722 g/㎡, respectively) were also higher and were comparable with other humid tropical grasslands. The turnover of organic matter was rapid, Of the total input of 14.47 g/㎡ into the system, about 86.3% was allocated to above ground parts and 13.7% to below ground parts. The total disappearance was 2.56 g/㎡ and it was accounted to be 17.68% of the total output. The net surplus of dry matter (82.32%) in the post fire community indicates that the grassland was maintained in a seral stage. Hence it is suggested that prescribed burning may keep this ecosystem in a highly productive and seral stage.

  • PDF

Biomass, Primary Nutrient and Carbon Stock in a Sub-Himalayan Forest of West Bengal, India

  • Shukla, Gopal;Chakravarty, Sumit
    • Journal of Forest and Environmental Science
    • /
    • 제34권1호
    • /
    • pp.12-23
    • /
    • 2018
  • Quantitative information on biomass and available nutrients are essential for developing sustainable forest management strategies to regulate atmospheric carbon. An attempt was made at Chilapatta Reserve Forest in Duars region of West Bengal to quantify its above and below ground carbon along with available "N", "P" and "K" in the soil. Stratified random nested quadrats were marked for soil, biomass and litter sampling. Indirect or non-destructive procedures were employed for biomass estimation. The amount of these available nutrients and organic carbon quantified in soil indicates that the forest soil is high in organic carbon and available "K" and medium in phosphorus and nitrogen. The biomass, soil carbon and total carbon (soil C+C in plant biomass) in the forest was 1,995.98, 75.83 and $973.65Mg\;ha^{-1}$. More than 90% of the carbon accumulated in the forest was contributed by the trees. The annual litter production of the forest was $5.37Mg\;ha^{-1}$. Carbon accumulation is intricately linked with site quality factors. The estimated biomass of $1,995.98Mg{\cdot}ha^{-1}$ clearly indicates this. The site quality factor i.e. tropical moist deciduous with optimum availability of soil nutrients, heavy precipitation, high mean monthly relative humidity and optimum temperature range supported luxuriant growth which was realized as higher biomass accumulation and hence higher carbon accumulated.

고농도 아연 조건에서 수수-수단그라스 교잡종의 생장, 광합성 및 아연 제거능 (Growth, Photosynthesis and Zinc Elimination Capacity of a Sorghum-Sudangrass Hybrid under Zinc Stress)

  • 오순자;고석찬
    • 한국환경과학회지
    • /
    • 제25권8호
    • /
    • pp.1143-1153
    • /
    • 2016
  • Plant biomass, photosystem II (PSII) photochemical activity, photosynthetic function, and zinc (Zn) accumulation were investigated in a sorghum-sudangrass hybrid (Sorghum bicolor ${\times}$ S. sudanense) exposed to various Zn concentrations to determine the elimination capacity of Zn from soils. Plant growth and biomass of the sorghum-sudangrass hybrid decreased with increasing Zn concentration. Symptoms of Zn toxicity, i.e., withering and discoloration of old leaves, were found at Zn concentrations over 800 ppm. PSII photochemical activity, as indicated by the values of $F_v/F_m$ and $F_v/F_o$, decreased significantly three days after exposure to Zn concentrations of 800 ppm or more. Photosynthetic $CO_2$ fixation rate (A) was high between Zn concentrations of 100-200 ppm ($22.5{\mu}mol$ $CO_2{\cdot}m^{-2}{\cdot}s^{-1}$), but it declined as Zn concentration increased. At Zn concentrations of 800 and 1600 ppm, A was 14.1 and $1.8{\mu}mol$ $CO_2{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. The patterns of stomatal conductance ($g_s$), transpiration rate (E), and water use efficiency (WUE) were all similar to that of photosynthetic $CO_2$ fixation rate, except for dark respiration ($R_d$), which showed an opposite pattern. Zn was accumulated in both above- and below-ground parts of plants, but was more in the below-ground parts. Magnesium (Mg) and iron (Fe) concentrations were significantly low in the leaves of plants, and symptoms of Mg or Fe deficiency, such as a decrease in the SPAD value, were found when plants were treated with Zn concentrations above 800 ppm. These results suggest that the sorghum-sudangrass hybrid is able to accumulate Zn to high level in plant body and eliminate it with its rapid growth and high biomass yield.

Carbon balance and net ecosystem production in Quercus glauca forest, Jeju Island in South Korea

  • Jeong, Heon Mo;You, Young Han;Hong, Seungbum
    • Journal of Ecology and Environment
    • /
    • 제46권3호
    • /
    • pp.250-258
    • /
    • 2022
  • Background: To assess the carbon sequestration capacity and net ecosystem productivity (NEP) of Quercus glauca forests, we analyzed the net primary productivity (NPP), carbon storage, and carbon emission of soil in a Q. glauca forest on Jeju Island (South Korea) from 2016 to 2018. Results: The average carbon stock in the above- and below-ground plant biomass was 223.7 Mg C ha-1, while the average amount of organic carbon fixed by photosynthesis was 9.8 Mg C ha-1 yr-1, and the average NPP was 9.6 Mg C ha-1 yr-1. Stems and branches contributed to the majority of the above- and below-ground standing biomass and NPP. The average heterotrophic carbon emission from the soil was 8.7 Mg C ha-1 yr-1, while the average NEP was 1.1 Mg C ha-1 yr-1. Although the carbon stock, carbon absorption, and soil respiration values were higher than those reported in other oak forests in the world, the NEP was similar or lower. Conclusions: These results indicator that Q. glauca forests perform the role of a large carbon sink through the CO2 absorption in the plants in terms of carbon balance. And it is judged to be helpful as data for assessment of carbon storage and flux in the forests and mitigation of elevated CO2 in the atmosphere.