Browse > Article
http://dx.doi.org/10.5322/JESI.2016.25.8.1143

Growth, Photosynthesis and Zinc Elimination Capacity of a Sorghum-Sudangrass Hybrid under Zinc Stress  

Oh, Soonja (Agricultural Research Institute for Climate Change, RDA)
Koh, Seok Chan (Department of Biology & Research Institute for Basic Sciences, Jeju National University)
Publication Information
Journal of Environmental Science International / v.25, no.8, 2016 , pp. 1143-1153 More about this Journal
Abstract
Plant biomass, photosystem II (PSII) photochemical activity, photosynthetic function, and zinc (Zn) accumulation were investigated in a sorghum-sudangrass hybrid (Sorghum bicolor ${\times}$ S. sudanense) exposed to various Zn concentrations to determine the elimination capacity of Zn from soils. Plant growth and biomass of the sorghum-sudangrass hybrid decreased with increasing Zn concentration. Symptoms of Zn toxicity, i.e., withering and discoloration of old leaves, were found at Zn concentrations over 800 ppm. PSII photochemical activity, as indicated by the values of $F_v/F_m$ and $F_v/F_o$, decreased significantly three days after exposure to Zn concentrations of 800 ppm or more. Photosynthetic $CO_2$ fixation rate (A) was high between Zn concentrations of 100-200 ppm ($22.5{\mu}mol$ $CO_2{\cdot}m^{-2}{\cdot}s^{-1}$), but it declined as Zn concentration increased. At Zn concentrations of 800 and 1600 ppm, A was 14.1 and $1.8{\mu}mol$ $CO_2{\cdot}m^{-2}{\cdot}s^{-1}$, respectively. The patterns of stomatal conductance ($g_s$), transpiration rate (E), and water use efficiency (WUE) were all similar to that of photosynthetic $CO_2$ fixation rate, except for dark respiration ($R_d$), which showed an opposite pattern. Zn was accumulated in both above- and below-ground parts of plants, but was more in the below-ground parts. Magnesium (Mg) and iron (Fe) concentrations were significantly low in the leaves of plants, and symptoms of Mg or Fe deficiency, such as a decrease in the SPAD value, were found when plants were treated with Zn concentrations above 800 ppm. These results suggest that the sorghum-sudangrass hybrid is able to accumulate Zn to high level in plant body and eliminate it with its rapid growth and high biomass yield.
Keywords
Biomass; PSII photochemical activity; Photosynthetic $CO_2$ fixation rate; Zinc accumulation; Zn toxicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cambrolle, J., Mancilla-Leyton, J. M., Munoz-Valles, S., Luque, T., Figueroa, M. E., 2012, Zinc tolerance and accumulation in the salt-marsh shrub Halimione portulacoides, Chemosp., 86, 867-874.   DOI
2 Chaoui, A., Mazhoudi, S., Ghorbal, M. H., Elferjani, E., 1997, Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.), Plant Sci., 127, 139-147.   DOI
3 Foy, C. D., Chaney, R. L., White, M. C., 1978, The physiology of metal toxicity in plants, Annu. Rev. Plant Physiol., 29, 511-566.   DOI
4 Hansch, R., Mendel, R. R., 2009, Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl), Curr. opin. plant biol., 12, 259-266.   DOI
5 Hassan, Z., Aarts, M. G. M., 2011, Opportunities and feasibilities for biotechnological improvement of Zn, Cd or Ni tolerance and accumulation in plants, Environ. Exp. Bot., 72, 53-63.   DOI
6 Hoagland, D. R., Arnon, D. I., 1950, The water-culture method for growing plants without soil, Univ. of Calif. Agricu. Exp. Stn. Circ., 347, 1-32.
7 Jain, R., Srivastava, S., Solomon, S., Shrivastava, A. K., Chandra, A., 2010, Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.), Acta physiol. plant., 32, 979-986.   DOI
8 Kaya, C., Higgs, D., 2001, Inter-relationships between zinc nutrition, growth parameters, and nutrient physiology in a hydroponically grown tomato cultivar, J. plant nutrition, 24, 1491-1503.   DOI
9 Kriedemann, P. E., Graham, R. D., Wiskich, J. T., 1985, Photosynthetic dysfunction and in vivo changes in chlorophyll a fluorescence from manganese-deficient wheat leaves, Aust. J. Agric. Res., 36, 157-169.   DOI
10 Kumar, P. N., Dushenkov, V., Motto, H., Raskin, I., 1995, Phytoextraction: The use of plants to remove heavy metals from soils, Environ. Sci. Technol., 29, 1232-1238.   DOI
11 L'Herroux, L., Le Roux, S., Appriou, P., Martinez, J., 1997, Behaviour of metals following intensive pig slurry applications to a natural field treatment process in Brittany (France), Environ. Pollu., 97, 119-130.   DOI
12 Legros, S., Doelsch, E., Feder, F., Moussard, G., Sansoulet, J., Gaudet, J. P., Bottero, J. Y., 2013, Fate and behaviour of Cu and Zn from pig slurry spreading in a tropical water-soil-plant system, Agri. Ecos. Environ., 164, 70-79.   DOI
13 Mallick, N., Mohn, F. H., 2003, Use of chlorophyll fluorescence in metal-stress research: A case study with the green microalga Scenedesmus, Ecotox. Environ. Saf., 55, 64-69.   DOI
14 Mateos-Naranjo, E., Redondo-Gomez, S., Cambrolle, J., Luque, T., Figueroa, M. E., 2008, Growth and photosynthetic responses to zinc stress of an invasive cordgrass, Spartina densiflora, Plant Biol., 10, 754-762.   DOI
15 Monnet, F., Vaillant, N., Vernay, P., Coudret, A., Sallanon, H., Hitmi, A., 2001, Relationship between PSII activity, $CO_2$ fixation, and Zn, Mn, and Mg contents of Lolium perenne under zinc stress, J. Plant Physiol., 158, 1137-1144.   DOI
16 Mousavi, S. R., Galavi, M., Rezaei, M., 2013, Zinc (Zn) importance for crop production, Intl. J. Agron. Plant Prod., 4, 64-68.
17 NIAST (National Institute of Agricultural Science and Technology), 2000, Analytical methods of soil and plant. NIAST. Rural Development Administration (RDA), Suwon, Korea.
18 Oh, M. H., 1998, Changes in copper and zinc content in volcanic ash soils with Years of Citrus cultivation, M.S. Degree, Jeju National University, Jeju, Korea.
19 Penha, H. G. V., Menezes, J. F. S., Silva, C. A., Lopes, G., de Andrade Carvalho, C., Ramos, S. J., Guilherme, L. R. G., 2015, Nutrient accumulation and availability and crop yields following long-term application of pig slurry in a Brazilian Cerrado soil, Nutri. Cycling Agroeco., 101, 259-269.   DOI
20 Oh, S., Koh, S. C., 2015, Copper and zinc uptake capacity of a sorghum-sudangrass hybrid selected for in situ pytoremediation of soils polluted by heavy metals, J. Environ. Sci., 24, 1501-1511.
21 Prasad, M. N. V., 1999, Heavy metal stress in plants: from molecules to ecosystems, Springer, Berlin.
22 Sagardoy, R., Morales, F., Lopez-Millan, A. F., Abadia, A., Abadia, J., 2009, Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics, Plant Biol., 11, 339-350.   DOI
23 Sagardoy, R., Vazquez, S., Florez-Sarasa, I. D., Albacete, A., Ribas-Carbo, M., Flexas, J., 2010, Stomatal and mesophyll conductances to $CO_2$ are the main limitations to photosynthesis in sugar beet (Beta vulgaris) plants grown with excess zinc, New Phytol., 187, 145-158.   DOI
24 Shrotri, C., Rathore, V., Mohanty, P., 1981, Studies on photosynthetic electron transport, photophosphorylation and $CO_2$ fixation in $Zn^{2+}$ deficient leaf cells of Zea mays, J. Plant Nutri., 3, 945-954.   DOI
25 Shute, T., Macfie, S. M., 2006, Cadmium and zinc accumulation in soybean: A threat to food safety?, Sci. Total Environ., 371, 63-73.   DOI
26 Sikdar, S. K., Grosse, D., Rogut, I., 1998, Membrane technologies for remediating contaminated soils: A critical review, J. Membr. Sci., 151, 75-85.   DOI
27 Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., Lux, A., 2007, Zinc in plants, New Phytol., 173, 677-702.   DOI
28 Baker, A. J. M., Brooks, R. R., 1989, Terrestrial higher plants which hyperaccumulate metallic elements-A review of their distribution, ecology and phytochemistry, Biorecovery, 1, 81-126.
29 Bjorkman, O., Demmig, B., 1987, Photon yield of $O_2$ evolution and chlorophyll fluorescence characteristic at 77K among vascular plant of diverse origins, Planta, 170, 489-504.   DOI
30 Bonnet, M., Camares, O., Veisseire, P., 2000, Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv. Apollo), J. Exp. Bot., 51, 945-953.
31 Vaillant, N., Monnet, F., Hitmi, A., Sallanon, H., Coudret, A., 2005, Comparative study of responses in four Datura species to a zinc stress, Chemosphere, 59, 1005-1013.   DOI
32 Todeschini, V., Lingua, G., D'Agostino, G., Carniato, F., Roccotiello, E., Berta, G., 2011, Effects of high zinc concentration on poplar leaves: A morphological and biochemical study, Environ. Exp. Bot., 71, 50-56.   DOI