• Title/Summary/Keyword: belief propagation

Search Result 96, Processing Time 0.021 seconds

Estimating BP Decoding Performance of Moderate-Length Irregular LDPC Codes with Sphere Bounds

  • Chung, Kyu-Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.7C
    • /
    • pp.594-597
    • /
    • 2010
  • This paper estimates belief-propagation (BP) decoding performance of moderate-length irregular low-density parity-check (LDPC) codes with sphere bounds. We note that for moderate-length($10^3{\leq}N{\leq}4\times10^3$) irregular LDPC codes, BP decoding performance, which is much worse than maximum likelihood (ML) decoding performance, is well matched with one of loose upper bounds, i.e., sphere bounds. We introduce the sphere bounding technique for particular codes, not average bounds. The sphere bounding estimation technique is validated by simulation results. It is also shown that sphere bounds and BP decoding performance of irregular LDPC codes are very close at bit-error-rates (BERs) $P_b$ of practical importance($10^{-5}{\leq}P_b{\leq}10^{-4}$).

Decoding of LT-Like Codes in the Absence of Degree-One Code Symbols

  • Abdulkhaleq, Nadhir I.;Gazi, Orhan
    • ETRI Journal
    • /
    • v.38 no.5
    • /
    • pp.896-902
    • /
    • 2016
  • Luby transform (LT) codes were the first practical rateless erasure codes proposed in the literature. The performances of these codes, which are iteratively decoded using belief propagation algorithms, depend on the degree distribution used to generate the coded symbols. The existence of degree-one coded symbols is essential for the starting and continuation of the decoding process. The absence of a degree-one coded symbol at any instant of an iterative decoding operation results in decoding failure. To alleviate this problem, we proposed a method used in the absence of a degree-one code symbol to overcome a stuck decoding operation and its continuation. The simulation results show that the proposed approach provides a better performance than a conventional LT code and memory-based robust soliton distributed LT code, as well as that of a Gaussian elimination assisted LT code, particularly for short data lengths.

Improved Reliability-Based Iterative Decoding of LDPC Codes Based on Dynamic Threshold

  • Ma, Zhuo;Du, Shuanyi
    • ETRI Journal
    • /
    • v.37 no.4
    • /
    • pp.736-742
    • /
    • 2015
  • A serial concatenated decoding algorithm with dynamic threshold is proposed for low-density parity-check codes with short and medium code lengths. The proposed approach uses a dynamic threshold to select a decoding result from belief propagation decoding and order statistic decoding, which improves the performance of the decoder at a negligible cost. Simulation results show that, under a high SNR region, the proposed concatenated decoder performs better than a serial concatenated decoder without threshold with an Eb/N0 gain of above 0.1 dB.

Improved Upper Bounds on Low Density Parity Check Codes Performance for the Input Binary AWGN Channel

  • Yu Yi;Lee, Moon-Ho
    • Proceedings of the IEEK Conference
    • /
    • 2002.06a
    • /
    • pp.323-326
    • /
    • 2002
  • In this paper, we study the improved bounds on the performance of low-density parity-check (LDPC) codes over binary-input additive white Gaussian noise (AWGN) channels with belief propagation (BP) decoding in log domain. We define an extended Gallager ensemble based on a new method of constructing parity check matrix and make use of this way to improve upper bound of LDPC codes. At the same time, many simulation results are presented in this paper. These results indicate the extended Gallager ensembles based on Hamming codes have typical minimum distance ratio, which is very close to the asymptotic Gilbert Varshamov bound and the superior performance which is better than the original Gallager ensembles.

  • PDF

On the Design of Block Lengths for Irregular LDPC Codes Based on the Maximum Variable Degree

  • Chung, Kyu-Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11C
    • /
    • pp.907-910
    • /
    • 2010
  • This paper presents the design of block lengths for irregular low-density parity-check (LDPC) codes based on the maximum variable degree $d_{{\upsilon},max}$. To design a block length, the performance degradation of belief-propagation (BP) decoding performance from upper bounds on the maximum likelihood (ML) decoding performance is used as an important factor. Since for large block lengths, the performance of irregular LDPC codes is very close to the Shannon limit, we focus on moderate block lengths ($5{\times}10^2\;{\leq}\;N\;{\leq}\;4{\times}10^3$). Given degree distributions, the purpose of our paper is to find proper block lengths based on the maximum variable degree $d_{{\upsilon},max}$. We also present some simulation results which show how a block length can be optimized.

High-qualtiy 3-D Video Generation using Scale Space (계위 공간을 이용한 고품질 3차원 비디오 생성 방법 -다단계 계위공간 개념을 이용해 깊이맵의 경계영역을 정제하는 고화질 복합형 카메라 시스템과 고품질 3차원 스캐너를 결합하여 고품질 깊이맵을 생성하는 방법-)

  • Lee, Eun-Kyung;Jung, Young-Ki;Ho, Yo-Sung
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.620-624
    • /
    • 2009
  • In this paper, we present a new camera system combining a high-quality 3-D scanner and hybrid camera system to generate a multiview video-plus-depth. In order to get the 3-D video using the hybrid camera system and 3-D scanner, we first obtain depth information for background region from the 3-D scanner. Then, we get the depth map for foreground area from the hybrid camera system. Initial depths of each view image are estimated by performing 3-D warping with the depth information. Thereafter, multiview depth estimation using the initial depths is carried out to get each view initial disparity map. We correct the initial disparity map using a belief propagation algorithm so that we can generate the high-quality multiview disparity map. Finally, we refine depths of the foreground boundary using extracted edge information. Experimental results show that the proposed depth maps generation method produces a 3-D video with more accurate multiview depths and supports more natural 3-D views than the previous works.

  • PDF

Development of Operating Guidelines of a Multi-reservoir System Using an Artificial Neural Network Model (인공 신경망 모형을 활용한 저수지 군의 연계운영 기준 수립)

  • Na, Mi-Suk;Kim, Jae-Hee;Kim, Sheung-Kown
    • IE interfaces
    • /
    • v.23 no.4
    • /
    • pp.311-318
    • /
    • 2010
  • In the daily multi-reservoir operating problem, monthly storage targets can be used as principal operational guidelines. In this study, we tested the use of a simple back-propagation Artificial Neural Network (ANN) model to derive monthly storage guideline for daily Coordinated Multi-reservoir Operating Model (CoMOM) of the Han-River basin. This approach is based on the belief that the optimum solution of the daily CoMOM has a good performance, and the ANN model trained with the results of daily CoMOM would produce effective monthly operating guidelines. The optimum results of daily CoMOM is used as the training set for the back-propagation ANN model, which is designed to derive monthly reservoir storage targets in the basin. For the input patterns of the ANN model, we adopted the ratios of initial storage of each dam to the storage of Paldang dam, ratios of monthly expected inflow of each dam to the total inflow of the whole basin, ratios of monthly demand at each dam to the total demand of the whole basin, ratio of total storage of the whole basin to the active storage of Paldang dam, and the ratio of total inflow of the whole basin to the active storage of the whole basin. And the output pattern of ANN model is the optimal final storages that are generated by the daily CoMOM. Then, we analyzed the performance of the ANN model by using a real-time simulation procedure for the multi-reservoir system of the Han-river basin, assuming that historical inflows from October 1st, 2004 to June 30th, 2007 (except July, August, September) were occurred. The simulation results showed that by utilizing the monthly storage target provided by the ANN model, we could reduce the spillages, increase hydropower generation, and secure more water at the end of the planning horizon compared to the historical records.

Efficient LDPC-Based, Threaded Layered Space-Time-Frequency System with Iterative Receiver

  • Hu, Junfeng;Zhang, Hailin;Yang, Yuan
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.807-817
    • /
    • 2008
  • We present a low-density parity-check (LDPC)-based, threaded layered space-time-frequency system with emphasis on the iterative receiver design. First, the unbiased minimum mean-squared-error iterative-tree-search (U-MMSE-ITS) detector, which is known to be one of the most efficient multi-input multi-output (MIMO) detectors available, is improved by augmentation of the partial-length paths and by the addition of one-bit complement sequences. Compared with the U-MMSE-ITS detector, the improved detector provides better detection performance with lower complexity. Furthermore, the improved detector is robust to arbitrary MIMO channels and to any antenna configurations. Second, based on the structure of the iterative receiver, we present a low-complexity belief-propagation (BP) decoding algorithm for LDPC-codes. This BP decoder not only has low computing complexity but also converges very fast (5 iterations is sufficient). With the efficient receiver employing the improved detector and the low-complexity BP decoder, the proposed system is a promising solution to high-data-rate transmission over selective-fading channels.

  • PDF

A Novel LDPC Decoder with Adaptive Modified Min-Sum Algorithm Based on SNR Estimation (SNR 예측 정보 기반 적응형 Modified UMP-BP LDPC 복호기 설계)

  • Park, Joo-Yul;Cho, Keol;Chung, Ki-Seok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.4 no.4
    • /
    • pp.195-200
    • /
    • 2009
  • As 4G mobile communication systems require high transmission rates with reliability, the need for efficient error correcting code is increasing. In this paper, a novel LDPC (Low Density Parity Check) decoder is introduced. The LDPC code is one of the most popular error correcting codes. In order to improve performance of the LDPC decoder, we use SNR (Signal-to-Noise Ratio) estimation results to adjust coefficients of modified UMP-BP (Uniformly Most Probable Belief Propagation) algorithm which is one of widely-used LDPC decoding algorithms. An advantage of Modified UMP-BP is that it is amenable to implement in hardware. We generate the optimal values by simulation for various SNRs and coefficients, and the values are stored in a look-up table. The proposed decoder decides coefficients of the modified UMP-BP based on SNR information. The simulation results show that the BER (Bit Error Rate) performance of the proposed LDPC decoder is better than an LDPC decoder using a conventional modified UMP-BP.

  • PDF

New Stopping Criteria for Iterative Decoding of LDPC Codes in H-ARQ Systems (H-ARQ 시스템에서 LDPC 부호의 반복 복호 중단 기법)

  • Shin, Beom-Kyu;Kim, Sang-Hyo;No, Jong-Seon;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9C
    • /
    • pp.683-690
    • /
    • 2008
  • By using inherent stopping criteria of LDPC codes, the average number of iterations can be substantially reduced at high signal to noise ratio (SNR). However, we encounter a problem when hybrid automatic repeat request (H-ARQ) systems are applied. Frequent failures of decoding at low SNR region imply that the decoder leaches the maximum number of iterations frequently and thus the decoding complexity increases. In this paper, we propose a combination of stopping criteria using the syndrome weight of tentative codeword. By numerical analysis, it is shown that the decoding complexity of given H-ARQ system is reduced by 70-80% with the proposed algorithms.