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A serial concatenated decoding algorithm with dynamic 
threshold is proposed for low-density parity-check codes 
with short and medium code lengths. The proposed 
approach uses a dynamic threshold to select a decoding 
result from belief propagation decoding and order statistic 
decoding, which improves the performance of the decoder 
at a negligible cost. Simulation results show that, under a 
high SNR region, the proposed concatenated decoder 
performs better than a serial concatenated decoder 
without threshold with an Eb/N0 gain of above 0.1 dB. 
 

Keywords: Channel coding, low-density parity-check 
code, reliability decoding, log-likelihood ratio 
accumulation. 

                                                               

Manuscript received Dec. 12, 2013; revised Apr. 1, 2015; accepted Apr. 15, 2015. 
This work was supported by the National Natural Science Foundation of China (Grant No. 

61271175), the Fundamental Research Funds for the Central Universities (Grant No. 
7214505101), and Open Project Program of Science and Technology on Information 
Transmission and Dissemination in Communication Networks Laboratory (ITD-U14006/ 
KX142600013).  

Ma Zhuo (corresponding author, zma@mail.xidian.edu.cn) and Du Shuanyi (shydy@ 
xidian.edu.cn) are with the State Key Lab of ISN, Xidian University, Xi’an and the Science and 
Technology on Information Transmission and Dissemination in Communication Networks 
Laboratory, Shijiazhuang, China. 

I. Introduction 

A reliability-based decoding algorithm is used to resolve 
performance degradation when a belief propagation (BP) 
algorithm is adopted to decode low-density parity-check 
(LDPC) codes with short and medium code lengths [1]. The 
performance degradation is caused by the short cycles in the 
Tanner graph of these codes, which cannot be ignored [2] in the 
case of short and medium code lengths.  

References [1] and [3] perform reliability-based order 
statistic decoding (OSD) after every BP iteration. The 
difference is that in [3], a cyclic redundancy check (CRC) is 
added after LDPC encoding. The CRC can be used either to 
check the correction of the OSD or as the criterion for 
terminating BP iterations.  

Considering the complexity of OSD decoding, another type 
of decoding scheme called the serial concatenated decoding is 
more acceptable. In this scheme, the OSD algorithm is 
performed only after the last BP iteration. However, the log-
likelihood ratio (LLR) oscillation phenomenon observed in [4] 
decreases the credibility of the LLR of the last iteration as a 
reliability measure. This problem is resolved in [5] by 
accumulating the LLR over the entire number of iterations as 
the reliability measure. Reference [6] generalizes such an LLR 
accumulation to the probability domain. Reference [7] uses a 
conditioned LLR to feed an OSD decoder, which also leads to 
a serial concatenated decoding scheme. Another method of 
combining a BP algorithm and reliability-based decoding 
algorithms is reported in [8], where the reliability-based 
decoding is applied alternatively to BP. The relief-based 
decoder in [8] uses the initial soft information instead of the 
soft values delivered by the last BP iteration whenever BP does 
not converge.  
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Many optimal or suboptimal reliability-based decoding 
algorithms are currently used for the concatenated decoding of 
LDPC codes, including the box-and-match algorithm (BMA) 
[9], chase-2 [10], and KNIH algorithms [11].  

Most of the aforementioned cited studies evaluate the 
performance of a concatenated decoding algorithm by block 
error rate (BLER) or codeword error rate (CER). Given that the 
reliability-based decoding algorithms always return a valid 
codeword, once this codeword is incorrect (an undetected error 
occurs), more error bits will be introduced than that of a BP 
decoder. Therefore, the performance gain achieved in a bit 
error rate (BER) metric is not as striking as that in a BLER 
metric assuming the same decoding scheme.  

References [12] and [13] consider bounded maximum-
likelihood (ML) decoders, such as a bounded-distance ML 
decoder, a bounded-angle ML decoder, and a bounded 
reciprocal likelihood ratio ML decoder. All of these bounded 
ML decoders introduce a bound to detect whether a decoding 
codeword is correct. When a decoding metric exceeds a given 
bound, a code error is detected, and an erasure is claimed.  

This paper introduces the idea of the bounded decoder to the 
OSD algorithm. A bound or threshold is used to determine 
whether to adopt the result of the OSD decoder or that of the 
BP decoder, based on serially concatenated BP-OSD (SC-BP-
OSD) algorithms. Unlike in [12] and [13], the threshold in the 
algorithm proposed in this paper is dynamically calculated to 
avoid mismatching.  

II. SC-BP-OSD Algorithm with Threshold 

Given that OSD is serially concatenated with BP decoding, it 
is performed only when a BP decoding achieves its maximum 
iterations and the checksum of the related final output 
codeword is not zero. The following analysis concerns the case 
where OSD is evoked.  

As previously discussed, OSD may choose a codeword other 
than the transmitted codeword as its decoding result, and the 
differences between these two codewords is no less than the 
minimum Hamming distance of the related LDPC code. Good 
LDPC codes often possess a large minimum Hamming 
distance. Thus, considerable bit errors occur once OSD returns 
an incorrect codeword. A predictable BER performance gain is 
obtained when an invalid codeword can be excluded and the 
BP decoding result is used. Finding a proper criterion for this 
choice is necessary.  

An OSD algorithm contains the following two main steps. 
The first step is to construct the most reliable basis (MRB)  
and to then systematically reprocess candidate codewords 
expressed in the MRB [1]. In the second step, Li candidate 
codewords are processed for order-i OSD of an LDPC code 

with a code length of N, where 
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The OSD algorithm calculates a decoding metric for every 
candidate codeword and selects the codeword with the smallest 
decoding metric. For each constructed codeword, c = (c0, 
c1, … , cN−1)

T, its associated decoding metric is computed based 
on the original noisy received sequence, y = (y0, y1, … , yN−1)

T. 
For the SC-BP-OSD algorithm, y is the accumulated LLR 
from BP decoding. The parameters r and c1 are the absolute 
value and the hard decision of y, respectively, which can be 
expressed as ri = |yi| and c1,i = (1 − sgn(yi))/2, 0 ≤ i ≤ N – 1; 
the function sgn(x) represents the sign of x. In fact, ri is the 
reliability value of the corresponding c1,i.  

One of the most commonly used decoding metrics is that of 
the weighted Hamming distance, which can be defined as 

T
w 1 1( , ) ( ),x xd  c c r c c              (2) 

where cx is one of the candidate codewords. The operation “+” 
is performed in GF(2). The decoding metric can be used to 
select the most likely codeword, which is denoted by c2, among 
all of the Li candidate codewords. Upon obtaining codeword c2 

with the smallest decoding metric, this smallest decoding 
metric itself can also be an indicator for the reliability of c2, 
which is a straightforward inference. Thus, a threshold, Td, is 
set to filter the OSD result — if the final decoding metric (the 
decoding metric of c2), dw(c1,c2), is smaller than Td, then the 
OSD result is chosen; otherwise, the BP decoding result is 
chosen.  

Based on the previous analysis, an SC-BP-OSD algorithm 
with threshold is constructed. This algorithm can be expressed 
as SC-BP-OSD with threshold, and its flowchart is shown in 
Fig. 1.  
 

 

Fig. 1. Flowchart of SC-BP-OSD algorithm with threshold: 
variable “a” denotes the checksum of BP decoding 
result c1. 

Input LLR 

BP decoding with LLR 
accumulation, get c1, y, and a

Output c1 Output c2 

No 
Yes

No 
Yes 

OSD decoding, get c2 with its dwIf a==0? 

If dw < Td

 



738   Ma Zhuo and Du Shuanyi ETRI Journal, Volume 37, Number 4, August 2015 
http://dx.doi.org/10.4218/etrij.15.0113.1265 

 

Fig. 2. Comparison of BER performance of different Td. 
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The key issue of the SC-BP-OSD algorithm with threshold 
is determining a proper threshold Td. A simple method is to 
investigate the performance of different Td through simulation 
and select the best one. This work has been done for several 
famous LDPC codes. Unfortunately, the simulation results 
show that selecting a Td with the best performance throughout 
the entire Eb/N0 range is difficult.  

Examples of utilizing decoding metrics to improve ML 
decoding algorithms are to be found in [14] and [15]. In [14], a 
threshold test is used to determine whether the codeword is 
likely to be the ML codeword. If the codeword is not accepted, 
then the decoder biases the input vector away from the 
candidate codeword, thereby reducing the decoding complexity. 
In [15], the OSD metric is used to arrange the list of the most  
a priori likely tests, thereby also reducing the decoding 
complexity. The algorithms in [14] and [15] are all based on 
pure OSD or ML decoders. Unlike in [14] and [15], the 
proposed approach of this paper uses the OSD metric to filter  
a correctly decoded codeword, which improves the BER 
performance of the SC-BP-OSD algorithm.  

Figure 2 shows a comparison of the BER performance under 
an AWGN channel for different values of Td, where an order-1 
OSD is considered. The LDPC code used in Fig. 2 is a regular 
(3,6) LDPC code with a code rate of 1/2 and code length of 
504 [16], represented as (504,252,3,6) LDPC code. The tested 
Td in this paper includes 200, 600, and 1,000. In Figure 2, Td = 
0 represents a BP decoding without OSD, and Td = ∞ 
represents an SC-BP-OSD algorithm without threshold. In an 
optimal situation, the decoding error caused by the OSD 
algorithm can always be detected, and this incorrect decoding 
codeword is then substituted with the BP decoding result. 
Although the optimal choice cannot be realized in practice, it 
can be computed in simulation. Whether the OSD output 
codeword is correct or not can be determined in simulation 

because the simulator knows what is being transmitted. The 
result for the optimal situation can be a lower bound for 
evaluating the performance of different Td. 

Figure 2 shows that Td = 600 performs better than Td = 200 
and Td = 1,000 for Eb/N0 less than 2.4 dB. However, for Eb/N0 
above 2.4 dB, Td = 1,000 has the best performance. Thus, 
selecting the threshold is difficult. After all, the performance of 
both Td = 600 and Td = 1,000 has a notable gap from that of the 
optimal situation.  

III. Dynamically Calculated Threshold  

Since a fixed threshold cannot work properly in the entire 
Eb/N0 region, a different Td threshold can be used for different 
Eb/N0. However, this method requires many simulations to 
determine the Td of different Eb/N0. Finally, using this method, 
the performance gap from the optimal algorithm cannot be 
reduced yet.  

Based on the Gaussian approximation of the density 
evolution of the BP decoding algorithm of LDPC codes, and 
given an Eb/N0 and an LDPC code, there will be a unique value 
for the mean of the LLR output, mv, when the iteration 
approaches infinity [17]. The relationship between Eb/N0 and 
mv can be denoted as a function, mv = f(Eb/N0). Based on the 
analysis in [17], the function f(Eb/N0) is monotonically 
increasing.  

Considering that the Gaussian approximation of density 
evolution is derived based on the assumption that an all-zero 
codeword is transmitted, mv is indeed a conditional mean. If   
a non-zero codeword is transmitted, then mv can be 
approximated as the mean of the absolute values of the LLR 
outputs. As a result, the decoding metric, which is expressed by 
a weighted Hamming distance, also exhibits a growing trend 
because the weighting value is increased. This result explains 
why Td = 1,000 performs better for large Eb/N0 than Td = 600.  

The effect of the mean of the absolute values of the LLR 
outputs on the value of the decoding metric produces the idea 
that a variable threshold Td based on the LLR output of BP 
decoding can be calculated as follows:  
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where r  is the mean of the absolute values of the LLR 
outputs (r). The parameter α is to be determined and may be 
called the threshold factor.  

The variable dw(c1,c2) can be expressed in the form of the 
sum of each element; that is, 
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The following definition is then obtained: 
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where dh(c1,c2) is the Hamming distance between the 
codewords c1 and c2. The variable dcmp can be viewed as an 
estimation of dw(c1,c2).  

A comparison of (3) and (5) shows that dcmp and Td are both 
scalar multiples of .r  Considering that the purpose of Td is to 
determine whether the decoding metric dw is too large to be 
accepted, the value of the scalar of Td, α, has a close 
relationship with the scalar of dcmp, dh(c1,c2).  

If c1 falls inside the decision boundaries of the correct 
codeword c0, then the Hamming distance between them is not 
more than dh(c1,c2)/2. Under this assumption, c2 with decoding 
metric dw(c1,c2) > dmin r /2 has a large probability of being an 
incorrect codeword. Here, dmin is the minimum Hamming 
distance. Since a weighted Hamming distance is used in 
determining which codeword is more similar to c1 instead of a 
Hamming distance, a c1 with a Hamming distance from c0 of 
more than dmin/2 may also be correctly decoded. As a result, α 
> dmin/2.  

The lower bound of α has been retrieved, but how about the 
upper bound? Simulation and analysis do not suggest the 
existence of a proper upper bound that is suitable to all kinds of 
LDPC codes. However, the lower bound does facilitate the 
search for the best α because the simulated α can be adopted 
starting from the value that is half of the minimum Hamming 
distance of the considered LDPC code. 

IV. Performance Analysis for Codeword Error 
Detection  

The threshold of the algorithm proposed in this paper 
determines whether a decoding codeword is correct; however, 
this decision itself may or may not be a correct one. If an OSD 
output codeword is incorrect and is detected as an error through 
the threshold check, then a detected error occurs — the 
probability of which is expressed as Pd

+. If a decoding 
codeword is incorrect but is not detected by a threshold, then an 
undetected error occurs; the probability of this happening is 
expressed by Pu. This definition of an undetected error is the 
same as that found in [12]–[13]; however, a detected error in 
[12]–[13] is slightly different in that there is no false detection 
probability, since detected errors coincide with erased 
codewords, and no decoder output is produced in such cases. 
Through the proposed approach, instead, a false detection is 
possible, since it may happen that an error is detected due to the 
decoding metric overcoming the threshold despite a decoder 
output codeword coinciding with a transmitted codeword. 

Thus, a detected error rate, Pd, can be divided into two parts: 
one is Pd

+, which is defined above, and the other is the 
probability that a decoding codeword is correct but is detected 
as an error, which can be denoted as Pd

–. The following 
relationships can now be established: 

 d d dP P P   ,                (6) 

 w d u d d uP P P P P P      ,          (7) 

where Pw is the codeword error rate.  
References [12]–[13] provide the relationships among Pw, Pd, 

and Pu for different bounds (which are of the same meaning as 
the threshold in this paper). The goal of [12]–[13] is to 
simultaneously minimize both Pw and Pu and to show the 
lower bound of Pu versus Pw for different bounds. Although 
different bounds are considered, the key point in [12]–[13] is 
not the bounds themselves but the relationship between Pw and 
Pu under such bounds. Based on the results of [12]–[13], a 
single bound will have a different performance under different 
Eb/N0. If a similar performance of Pu versus Pw for different 
Eb/N0 is expected, then a bound should be varied with Eb/N0, 
which leads to a dynamic bound.  

Unlike [12]–[13], OSD is serially concatenated with BP for 
the proposed approach; thus, an undetected codeword error 
should include that which is caused by BP. For a BP decoder, 
an undetected error occurs when a = 0; however, in such a case, 
the decoded codeword does not coincide with the transmitted 
one. For both the LDPC codes evaluated in this paper (also for 
most LDPC codes with sufficient code length), when only BP 
decoding is considered, the probability of an undetected 
codeword error occurring is small enough to be ignored. As a 
result, an undetected codeword error caused by BP is not 
considered in our later analysis and simulations.  

For the proposed approach, Pu is expected to be as small as 
possible; that is, most of the decoding errors of OSD can be 
correctly detected. Moreover, Pd

– should be minimized, which 
means the minimizing of the probability of discarding the 
correct OSD output codeword. The so-called optimal situation 
implies that Pu and Pd

– are all zero and that all the codeword 
errors are correctly detected errors. Unfortunately, the decline 
of Pu results in an increase in Pd

–, which in turn, is responsible 
for the increase in Pw shown in [12]. If the CER of OSD 
without threshold is Pw_osd, then 

 w_osd d uP P P  .               (8) 

Considering that Pw_osd is determinate given an Eb/N0, the 
proportion of Pu, Pd

–, and Pd
+ in Pw is clear enough to indicate 

the influence of the threshold on the proposed approach. Let 
Pcu, Pcd

–, and Pcd
+ be a percentage of Pu, Pd

–, and Pd
+, 

respectively, in Pw; Figure 3 shows them for different thresholds. 
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Fig. 3. Comparison of Pcu, Pcd
–, and Pcd

+ for different thresholds. 
Black line denotes result of dynamic threshold; blue line 
that of Td = 0; red line that of Td = 600; and green line that 
of Td = 1,000. For every situation above, the lines with *, 
+, and o denote the percentages of Pu, Pd

–, and Pd
+, 

respectively. 
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The (504,252,3,6) LDPC code used in Fig. 2 is also selected 
for computing Pcu, Pcd

–, and Pcd
+ in Fig. 3, and order-1 OSD is 

concerned. The Pcu, Pcd
–, and Pcd

+ for the optimal situation and 
for Td = ∞ are not shown in Fig. 3, because the following 
results are easy to be obtained: 

 u d d

u d d d

Pc 0, Pc 0, Pc 1 optimal,

Pc 1, Pc 0, Pc 0 .T

 

 

   


    
      (9) 

Percentage Pcu for Td = 0 is always zero; thus, it is also not 
shown in Fig. 3.  

Figure 3 shows that the Pcd
+ for the dynamic threshold 

situation is above 80% for Eb/N0 less than 2.4 dB and 
significantly decreases when Eb/N0 reaches 2.4 dB. This 
decreasing is caused by the increase in Pcd

–. However, the 
performance of Pcd

+ in the dynamic threshold situation is the 
best among all of the three given situations, which means that 
the filtering of the OSD output codeword has been optimized. 
For constant thresholds, such as Td = 600 and Td = 1,000, the 
fluctuation of Pcd

+ with Eb/N0 is on a large scale. As a result, Td 
= 600 and Td = 1,000 are only suitable for a part of the entire 
Eb/N0 region. 

The Pcu performance for the dynamic threshold situation is 
far better than that for the two constant thresholds situations, 
which is less than 11% for the whole Eb/N0 region.  

In all the situations, the variation of Pcd
– with Eb/N0 exhibits  

a similar trend; that is, Pcd
– increases as Eb/N0 grows. This 

phenomenon implies that, for large Eb/N0, correctly detecting 
the decoding codeword error is difficult. Fortunately, the 
decoding bit error of BP itself for large Eb/N0 is also small, 

which alleviates the bit error caused by Pd
–.  

The situation with Td = 0 has a constant Pcu, which is always 
zero. This makes Pcd

– and Pcd
+ complementary. The two 

curves of Pcd
– and Pcd

+ constitute an “X” form in the figure, 
with its crossing point near Eb/N0 = 1.3 dB. This “X” form 
indicates that the OSD output codeword becomes increasingly 
more accurate as Eb/N0 increases.  

V. Simulation Results 

Two rate 1/2 LDPC codes are simulated to verify the 
effectiveness of the proposed approach. Both of them have a 
code length of 504. Code A is the (504,252,3,6) LDPC code 
used in Fig. 2. Code B is an irregular LDPC code constructed 
using the progressive edge-growth algorithm [16]. The 
simulation is performed under an AWGN channel. The 
 

 

Fig. 4. BER performance of code A for different thresholds. 
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Fig. 5. BER performance of code B for different thresholds. 
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simulation result is shown in Figs. 4 and 5. The threshold 
factors (α) used for computing the dynamic threshold in Figs. 4 
and 5 are 16 and 30, respectively. 

Figures 4 and 5 show that the BER performance of the SC-
BP-OSD algorithm can be improved by introducing a 
dynamically calculated threshold for both codes. The BER 
improvement is approximately 0.1 dB for code A and 
approximately 0.15 dB for code B. For both codes, the BER 
performance of the proposed algorithm can approach the 
performance of the optimal situation. Particularly for code B, 
the BER curve of the dynamic threshold situation almost 
coincides with that of the optimal situation.  

Figures 4 and 5 also show that the BER performance of the 
SC-BP-OSD algorithm without threshold is worse than that of 
the pure BP algorithm for small Eb/N0. This result is different 
from the BLER performance of the SC-BP-OSD algorithm, 
where the SC-BP-OSD always performs better than BP. 
However, with a dynamically calculated threshold, the 
approach proposed in this paper can also outperform BP for all 
Eb/N0 regions when BER is considered.  

VI. Conclusion 

A dynamically calculated threshold is introduced in this 
paper to improve the BER performance of a serially 
concatenated BP-OSD algorithm. Most of the current 
improvements for the concatenated decoding algorithm are 
considered in relation to BLER performance, not BER. When 
BER is considered, most of the existing algorithms become 
mediocre in light of what has been achieved under the BLER 
metric. Using a threshold to determine whether the OSD output 
codeword is credible is a straightforward idea, but the 
simulation results show that a constant threshold cannot 
perform well for all Eb/N0 regions. Therefore, a dynamic 
threshold is computed from the mean of the absolute values of 
the LLR outputs of BP decoding. The codeword error detection 
analysis shows that SC-BP-OSD with dynamic threshold has 
better Pcd

+ performance, which in turn, leads to better BER 
performance than that with constant threshold. Using the 
dynamic threshold, the BER performance of two rate 1/2 
LDPC codes can approach that under the optimal situation.  

In addition, the computation of the dynamic threshold 
requires only the mean of the absolute values of the input LLR 
of OSD. As a result, the increase in the computational 
complexity of the proposed approach is negligible compared 
with the high complexity of the OSD algorithm itself.  
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