• 제목/요약/키워드: behavior of failure

검색결과 3,187건 처리시간 0.031초

고온하 화강암의 변형 및 파괴거동에 관한 연구 (A Study on the Mechanicla Behavior of Two Granites at Elevated Temperatures)

  • 장명환;양형식
    • 터널과지하공간
    • /
    • 제7권2호
    • /
    • pp.130-135
    • /
    • 1997
  • When crystalline rocks are heated, thermal stress is induced by the differences in thermal expansion of the mineral composition and its orientation. In this study, high temperature uniaxial compressive tests were carried out for Iksan and Hwangdeung granites to study the deformation and failure behavior due to thermal loading. Compressive and tensile strength of Hwangdeung granite for 20$0^{\circ}C$ decreased to 80% and 82% of the room temperature strength, and those of Iksan granite decreased to 90% and 92% for 20$0^{\circ}C$, respectively. Elastic moduli of both granites were decreased sharply at the stress level of 80% of ultimate failure strength. Elastic moduli of both granites by variation of temperature at 50% of ultimate failure strength was decreased as almost linearly.

  • PDF

Axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns

  • Chen, Zongping;Xu, Jinjun;Chen, Yuliang;Xue, Jianyang
    • Steel and Composite Structures
    • /
    • 제20권2호
    • /
    • pp.295-316
    • /
    • 2016
  • This paper presents the results of experimental investigation, numerical calculation and theoretical analysis on axial compression ratio limit values for steel reinforced concrete (SRC) special shaped columns. 17 specimens were firstly intensively carried out to investigate the hysteretic behavior of SRC special shaped columns subjected to a constant axial load and cyclic reversed loads. Two theories were used to calculate the limits of axial compression ratio for all the specimens, including the balanced failure theory and superposition theory. It was found that the results of balanced failure theory by numerical integration method cannot conform the reality of test results, while the calculation results by employing the superposition theory can agree well with the test results. On the basis of superposition theory, the design limit values of axial compression ratio under different seismic grades were proposed for SRC special shaped columns.

콘크리트 CIP 앵커시스템의 파괴 거동에 관한 연구 (Fracture behavior of Cast-in-place Headed Anchors to Concrete)

  • 박성균;김호섭;윤영수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제5권3호
    • /
    • pp.141-152
    • /
    • 2001
  • This paper presents the evaluation of behavior and the prediction of tensile capacity of anchors that can cause a failure of the concrete on the basis of the design for anchorage. Tests of cast-in-place headed anchors, domestically manufactured and installed in uncracked and unreinforced concrete member are conducted to test the effected of embedment length and edge distance. The failure modes and the load-deformation responses of the anchors are discussed and then the concrete failure data are compared with capacities by the two present methods : the 45 degree cone method of ACI 349, 318 and the concrete capacity design (COD) method. Differences between the results by test and by two prediction methods are analyzed Finite Element Method (FEM).

  • PDF

모형 실험에 의한 터널 복공의 역학적 거동 및 균열 특성에 관한 연구 (Mechanical Behavior and Cracking Characteristics of Tunnel Lining by Model Experiment)

  • 이대혁;김영근;이희근
    • 터널과지하공간
    • /
    • 제8권1호
    • /
    • pp.53-66
    • /
    • 1998
  • Considering the mechanical cracking in the concrete lining of tunnels occurring in relatively short period of time after the construction, there is a need for the study on the mechanical behavior and the cracking characteristics of double lining support system(shotcrete and concrete lining). For the proposed study, downscaled lining models of Kyung-Bu High Speed Railway tunnels were tested. Most longitudinal cracks at about 93 percentage developed within 30 arch degree from the vault. Cracking load was about 30 percentage of the failure load and the deflection under the cracking load was 10 percentage of the deflection under the failure load. The overbreak around the vault contributed to the reduction of the capacity for cracking and failure by the percentage greater than the reduced effective depth. Of several rock block types considered in this research, the triangular block was the most critical, and the right triangular block under eccentric load was secondly critical for the stability of the tunnel lining system. The dimensionless support reaction curves were derived from the experimental results for single and double lining. The general equation to compute the designed flexural moment was modified.

  • PDF

I형강 합성 중공바닥판의 휨거동 (Flexural Behavior of I-beam Composite Hollow Slabs)

  • 김대호;심창수;박창규;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.421-426
    • /
    • 2003
  • For the replacement of deteriorated concrete decks or wider-span slab, composite slab could be very attactive due to higher stiffness and strength. Based on the previous research, a modified I-beam composite hollow slab was suggested. In order to investigate the static flexural behavior of the proposed composite slab and to suggest its flexural design method, experiments were performed. Judging from the tests, a composite slab with I-beam having a semi-circle hole showed better structural performance. The effect of web details on the flexural stiffness was negligible. Flexural stiffness, ultimate strength, and ductility of the composite slabs were significantly greater than the RC slab due to composite action. While the failure of the RC slab was punching shear failure, the composite hollow slab showed flexural cracking and failure by yielding of the I-beams and crushing of concrete. Therefore, the current one-way design concept is appropriate for the design of I-beam composite hollow slab.

  • PDF

강판 휨보강된 철근 콘크리트보의 구조적 거동 (Structural Behavior of RC Beam Strengthened with Steel Plate)

  • 오병환;강동욱;조재열;채성태;이명규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.598-604
    • /
    • 1997
  • In recent years, strengthening by epoxy-bonded steel plates, carbon fiber sheets, aramid fiber sheets and so on, is spotlighted. Among them, the method using steel plates is most widely applied. Most studies have dealt with strengthening by epoxy-bonded steel plates. However the actual behavior of strengthened RC beams are not well established. Particularly, the studies on the separation load thar affects failure load of the beam are relatively insufficient. In this study, test parameters are the magnitude of pre-load, plate length, plate thickness, existence and spacing of anchor bolt, the number of plate layer and the height of side strengthening, 17reinforced concrete beams are strengthened by steel plates according to test parameters. Deflection, failure load, strains of reinforcing bar, concrete and plate are measured from tests(4 points loading). The failure mode, and separation load are analyzed from these measured data. The difference between Robert's theory and test results is discussed, and the prediction equation for separation load in the case of rip off is proposed.

  • PDF

확률함수를 이용한 비균질 Ti-6Al-4V 합금의 변형 및 파손해석 (Deformation and Failure Analysis of Heterogeneous Microstructures of Ti-6Al-4V Alloy using Probability Functions)

  • 김태원;고은영
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.685-692
    • /
    • 2004
  • A stochastic approach has been presented for superplastic deformation of Ti-6Al-4V alloy, and probability functions are used to model the heterogeneous phase distributions. The experimentally observed spatial correlation functions are developed, and microstructural evolutions together with superplastic deformation behavior have been investigated by means of the two-point and three-point probability functions. The results have shown that the probability varies approximately linearly with separation distance, and deformation enhanced probability changes during the process. The stress-strain behavior with the evolutions of probability function can be correctly predicted by the model. The finite element implementation using Monte Carlo simulation associated with reconstructed microstructures shows that better agreement with experimental data of failure strain on the test specimen.

철도차량 복합소재의 인장파괴 특성분석 (Tensile Failure Characterization of Composites for Railway Vehicle)

  • 김정국;권성태;김정석;윤혁진
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1231-1235
    • /
    • 2010
  • The tensile failure behavior of polymer matrix composite materials was investigated with the aid of a nondestructive evaluation (NDE) technique. The materials, E-glass fiber reinforced epoxy matrix composites, which are applicable to carbody materials in railway vehicles to reduce weight, were used for this investigation. In order to explain stress-strain behavior of polymer matrix composite sample, the infrared thermography technique was employed. A high-speed infrared (IR) camera was used for in-situ monitoring of progressive damages of polymer matrix composite samples during tensile testing. In this investigation, the IR thermography technique was used to facilitate a better understanding of damage evolution, fracture mechanism, and failure mode of polymer matrix composite materials during monotonic loadings.

  • PDF

FTA(Fault Tree Analysis)기법을 이용한 이송용 대부하 베어링 고장 진단 (Fault diagnosis of walking beam roller bearing by FTA)

  • Bae, Y.H.;Lee, H.K.;Lee, S.J.
    • 한국정밀공학회지
    • /
    • 제11권5호
    • /
    • pp.110-123
    • /
    • 1994
  • The development of automatic production systems have required inteligent diagnostic and monitoring function to repair system failure and reduce production loss by the failure. In order to perform accurate functions of intelligent system, inferencing about total system failure and fault analysis due to each mechanical component failures are required. Also the solution about repair and maintenance can be suggested from these analysis results. As an essential component of mechanical system, a bearing system is investigated to define the failure behavior. The bearing failure is caused by lubricant system failure, metallurgical defficiency, mechanical condition(vibration, overloading, misalignment) and environmental effect. This study described roller bearing fault train due to stress variation and metallurgical defficiency from lubricant failure by using FTA.

  • PDF

보강된 섬유강화 복합재료 패널의 좌굴해석 및 파손강도의 최적 설계 (Optimization for Buckling and Postbuckling Behavior of Stiffened Fiber Reinforced Composite Panels)

  • 이광록;양원호;조명래;성기득
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.913-919
    • /
    • 2001
  • In this study, fiber orientation of stiffener was conducted to increase buckling load or failure load in each case with a different design value and a different objective function for stiffened laminated composite panel of I-type under compression loading. Regarding each of buckling load or failure load as objective function, optimum design was carried out. In respect of optimum design, it was investigated that optimum shape for buckling could improve fail load for postbuckling, because it was difficult to investigate the optimization of postbuckling which need long analysis times for nonlinear analysis.

  • PDF