• Title/Summary/Keyword: behavior of failure

Search Result 3,168, Processing Time 0.034 seconds

An experimental Study on Shear Behavior of Reinforced Concrete Beams With Steel Fibrous (강섬유를 혼입한 철근콘크리트 보의 전단기둥에 관한 실험적 연구)

  • Bae, Ju-Seong;Kim, Kyoung-Soo;Kim, Jae-Wook;Cui, Yi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.557-560
    • /
    • 1999
  • In civil engineering and construction field, recently the great enhancement of new material and building technique have been made by many studies and reports. These studies have attracted many countries, since 1980's those study on reinforcement with steel fiber have been done by America, Japan and the other countries. Designs and proposals on building method have been applied, several universities and laboratory centers in our country have been studied, but the study on field application is short. Also a part of study on the shear behavior of reinforced concrete beams with steel fiber has accomplished. but up to this time, reliable establishment is undone. Therefore, this study is performed the static loading test to analysis shear failure behavior in reinforced concrete beams with steel fiber. we have observed the limit load of shear force, primary bending crack load, primary diagonal crack load, evaluating relative of load and steel, crack increase and failure shape according to increase of load. Through the exam and the observation of output, we estimate the shear failure behavior of SFRC beams according to fiber mixing amount.

  • PDF

A Study on Seismic Behavior of Space Frame Bridge Using Three-Dimensional Nonlinear Dynamic Analysis (3차원 비선형 동적해석을 이용한 입체라멘교의 지진거동특성에 관한 연구)

  • 김익현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.5
    • /
    • pp.45-51
    • /
    • 2002
  • The characteristics of nonlinear seismic behavior and failure mechanism of RC space frame in railroad viaducts have been studied by the numerical analysis in time domain. The structure concerned is modeled in 3 dimensional extent and the RC frame elements consisting of fibers are employed for the columns. The fibers are characterized as RC zone and PC one to distinguish the different energy release after cracking resulted from the bond characteristic between concrete and re-bar. Due to the deviation of the mass center and the stiffness center of the entire structure the complex behavior is shown under seismic actions. The excessive shear force is concentrated on the column beside flexible one relatively, which leads to the failure of bridge concerned.

Seismic behavior of steel truss reinforced concrete L-shaped columns under combined loading

  • Ning, Fan;Chen, Zongping;Zhou, Ji;Xu, Dingyi
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.139-152
    • /
    • 2022
  • Steel-reinforced concrete (SRC) L-shaped column is the vertical load-bearing member with high spatial adaptability. The seismic behavior of SRC L-shaped column is complex because of their irregular cross sections. In this study, the hysteretic performance of six steel truss reinforced concrete L-shaped columns specimens under the combined loading of compression, bending, shear, and torsion was tested. There were two parameters, i.e., the moment ratio of torsion to bending (γ) and the aspect ratio (column length-to-depth ratio (φ)). The failure process, torsion-displacement hysteresis curves, and bending-displacement hysteresis curves of specimens were obtained, and the failure patterns, hysteresis curves, rigidity degradation, ductility, and energy dissipation were analyzed. The experimental research indicates that the failure mode of the specimen changes from bending failure to bending-shear failure and finally bending-torsion failure with the increase of γ. The torsion-displacement hysteresis curves were pinched in the middle, formed a slip platform, and the phenomenon of "load drop" occurred after the peak load. The bending-displacement hysteresis curves were plump, which shows that the bending capacity of the specimen is better than torsion capacity. The results show that the steel truss reinforced concrete L-shaped columns have good collapse resistance, and the ultimate interstory drift ratio more than that of the Chinese Code of Seismic Design of Building (GB50011-2014), which is sufficient. The average value of displacement ductility coefficient is larger than rotation angle ductility coefficient, indicating that the specimen has a better bending deformation resistance. The specimen that has a more regular section with a small φ has better potential to bear bending moment and torsion evenly and consume more energy under a combined action.

Effects of Web Reinforcement Amount on Hysteretic Behavior of High Strength Reinforced Concrete Structural Walls (전단보강근비에 따른 고강도 철근콘크리트 내력벽의 이력특성)

  • 최근도;정학영;윤현도;최장식;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.85-90
    • /
    • 1994
  • Three high strength reinforced concrete structural walls were tested under the combined action of a constant axial and a horizontal cycle load. The aim of the tests has been to investigate the effects of the web horizontal reinforcement on hysteretic behavior of wall. The results have helped to identify the causes of wall failure and have demonstrated the web horizontal reinforcement does not appear have a significant effect on shear capacity, stiffness and energy dissipation but have a significant effect on the failure mode of the walls.

  • PDF

An Experimental Study on the Bond Splitting Behavior of R.C Beams using High-Strength Concrete (고강도콘크리트를 사용한 R.C 보 부재의 부착할렬성상에 관한 실험적 연구)

  • 곽노현;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.173-178
    • /
    • 1993
  • In order to quantify the effect of transverse reinforcement on the bond splitting behavior of reinforcement monotonic loading tests of 8 slmply beams were carried out. The reinforcing details and material properties were so determined that the bond splitting failure proceded the shear and flexural failure. A bond splitting strength derived from the experimental data and it accounts for following parameters: 1) Concrete Strength 2) Transverse reinforcement ratio and shape 3) Thickness of concrete cover 4)Deformation of reinforcement

  • PDF

An analytical Study on the premature Failure Behavior of RC Beams Strengthened by Steel Plates (강판으로 보강된 RC 보의 조기파괴거동 해석)

  • 심종성;김규선
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.821-826
    • /
    • 1998
  • The design methods for the steel plate strengthened RC structures are not well established yet because the structural behavior of plated RC beams is more complex than that of regular unplated ones. The main purpose of this paper is to present the premature failure mechanism of steel plate strengthened RC beams. The analytical models of interfacial stress and normal are also proposed in this paper. The comparisons between the analytical results using the proposed theory and experimental ones relatively satisfied.

  • PDF

Strengthening Effects of Epoxy Mortar Systems on Reinforced Concrete Beams by Flexural Tensile Strength (변성에폭시 모르터 휨인장강도가 단면증대 보에 미치는 영향)

  • 류현희;신영수;정혜교
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.787-790
    • /
    • 2000
  • This paper presents an experimental study on flexural behavior of structural member enlarged with epoxy mortar system. The main test variable is flexural tensile strength. A series of 4 test beams was tested to shoe the corresponding effect of each variables on maximum load capacity, load-deflection and moment-curvature relationship, interface behavior and failure mode. The results show that the flexural tensile strength of retrofitted materials have no relation load-deflection, but to load-strain, and failure mode.

  • PDF

An Experimental Study on the Flexural Behavior of RC beams Strengthened by CRFP-Grid (탄소격자섬유로 보강한 RC보의 휨거동에 관한 실험적 연구)

  • 조병완;김영진;태기호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.845-850
    • /
    • 1998
  • Flexural tests on 3.0m reinfored concrete beams with epoxy and anchor bolt bonded CFRF-Grid reported in these tests. The selected experimental variables are concrete compressive strength, strengthening length and strengthening method. The effects of these variables in overall behavior are discussed. The results generally shown that the main flexural mode of strengthened beams is separation failure. The strengthening of the chipping by the tensile bar is really necessary in order to prevent CFRP-Grid from rip-off failure.

  • PDF

Failure Prediction of Composite Single Lap Bonded Joints (복합재료 Single Lap 접합 조인트의 파손 예측)

  • Kim Kwang-Soo;Jang Young-Soon;Yi Yeong-Moo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.73-77
    • /
    • 2004
  • Failure predictions of composite single-lap bonded joints were performed considering both of composite adherend failure and bondline failure. An elastic-perfectly plastic model of adhesive and a delamination failure criterion are used. The failure prediction results such as failure mode and strength have very good agreements with the test results of joint specimens with various bonding methods and parameters. The influence of variations in the effective strength (that is, adhesion performance) and plastic behavior of adhesive on the failure characteristics of composite bonded joints are investigated numerically. The numerical results show that optimal joint strength is archived when adhesive and delamination failure occur in the same time.

  • PDF

Structural Behavior of Polymer Concrete Bos Girders (폴리머콘크리트 박스 거어더의 구조적 거동)

  • 연규석;김광우;이윤수;김성순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.213-219
    • /
    • 1993
  • The box girder was developed using polymer concrete, box girder were made for flexural behavior evaluation. The box girder was reinforced with reinforcing steel bars and fiber glass roving cloths. Failure loads were 13.5 tons and 16.6tons for steel reinforced girder and fiber glass reinforced girder, respectively. Especially for the fiber glass reinforced girder, the shape was not changed even after failure. It is expected that application of this idea will be useful for developing under ground box, girder, utility tunnel, small stream bridge box, etc.

  • PDF