• Title/Summary/Keyword: behavior and strength

Search Result 6,206, Processing Time 0.033 seconds

Analysis of Thermal Shock Behavior of Cladding with SiCf/SiC Composite Protective Films (SiCf/SiC 복합체 보호막 금속피복관의 열충격 거동 분석)

  • Lee, Dong-Hee;Kim, Weon-Ju;Park, Ji-Yeon;Kim, Dae-Jong;Lee, Hyeon-Geon;Park, Kwang-Heon
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.40-44
    • /
    • 2016
  • Nuclear fuel cladding used in a nuclear power plant must possess superior oxidation resistance in the coolant atmosphere of high temperature/high pressure. However, as was the case for the critical LOCA (loss-of-coolant accident) accident that took place in the Fukushima disaster, there is a risk of hydrogen explosion when the nuclear fuel cladding and steam reacts dramatically to cause a rapid high-temperature oxidation accompanied by generation of a huge amount of hydrogen. Hence, an active search is ongoing for an alternative material to be used for manufacturing of nuclear fuel cladding. Studies are currently aimed at improving the safety of this cladding. In particular, ceramic-based nuclear fuel cladding, such as SiC, is receiving much attention due to the excellent radiation resistance, high strength, chemical durability against oxidation and corrosion, and excellent thermal conduction of ceramics. In the present study, cladding with $SiC_f/SiC$ protective films was fabricated using a process that forms a matrix phase by polymer impregnation of polycarbosilane (PCS) after filament-winding the SiC fiber onto an existing Zry-4 cladding tube. It is analyzed the oxidation and microstructure of the metal cladding with $SiC_f/SiC$ composite protective films using a drop tube furnace for thermal shock test.

Fracture Simulation of UHPFRC Girder with the Interface Type Model (경계형 모델을 사용한 초고강도 섬유보강 콘크리트거더의 파괴역학적 해석)

  • Guo, Yi-Hong;Han, Sang-Mook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.81-94
    • /
    • 2010
  • This paper deals with the fracture simulation of UHPFRC girder with the interface type model. Based on the existing numerical simulation of quasi-brittle fracture in normal strength concrete, constitutive modeling for UHPFRC I-girder has been improved by including a tensile hardening at the failure surface. The finite element formulation is based on a triangular unit, constructed from constant strain triangles, with nodes along its sides and neither at the vertex nor the center of the unit. Fracture is simulated through a hardening/softening fracture constitutive law in tension, a softening fracture constitutive law in shear as well as in compression at the boundary nodes, with the material within the triangular unit remaining linear elastic. LCP is used to formulate the path-dependent hardening-softening behavior in non-holonomic rate form and a mathematical programming algorithm is employed to solve the LCP. The piece-wise linear inelastic yielding-failure/failure surface is modeled with two compressive caps, two Mohr-Coulomb failure surfaces, a tensile yielding surface and a tensile failure surface. The comparison between test results and numerical results indicates this method effectively simulates the deformation and failure of specimen.

Deformation of segment lining and behavior characteristics of inner steel lining under external loads (외부 하중에 따른 세그먼트 라이닝 변형과 보강용 내부 강재 라이닝의 거동 특성)

  • Gyeong-Ju Yi;Ki-Il Song
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.255-280
    • /
    • 2024
  • If there are concerns about the stability of segment lining due to section deficiency or large deformation in shield TBM tunnel, reinforcement can be done through ground grouting outside the tunnel or by using steel plate reinforcement, ring beam reinforcement, or inner double layer lining inside the tunnel. Traditional analyses of shield TBM tunnels have been conducted using a continuum method that does not consider the segmented nature of segment lining. This study investigates the reinforcement mechanism for double layer reinforced sections with internal steel linings. By improving the modeling of segment lining, this study applies Break-joint mode (BJM), which considers the segmented characteristics of segment lining, to analyze the deformation characteristics of double layer reinforced sections. The results indicate that the existing concrete segment lining functioned similarly to ground reinforcement around the tunnel, rather than distribution the load. In general, both the BJM model considering the segmentation of segment lining and the continuum rigid method were similar deformation shapes and stress distributions of the lining under load. However, in terms of deformation, when the load strength exceeded the threshold, the deformation patterns of the two models differed.

Numerical modeling of secondary flow behavior in a meandering channel with submerged vanes (잠긴수제가 설치된 만곡수로에서의 이차류 거동 수치모의)

  • Lee, Jung Seop;Park, Sang Deog;Choi, Cheol Hee;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.743-752
    • /
    • 2019
  • The flow in the meandering channel is characterized by the spiral motion of secondary currents that typically cause the erosion along the outer bank. Hydraulic structures, such as spur dike and groyne, are commonly installed on the channel bottom near the outer bank to mitigate the strength of secondary currents. This study is to investigate the effects of submerged vanes installed in a $90^{\circ}$ meandering channel on the development of secondary currents through three-dimensional numerical modeling using the hybrid RANS/LES method for turbulence and the volume of fluid method, based on OpenFOAM open source toolbox, for capturing the free surface at the Froude number of 0.43. We employ the second-order-accurate finite volume methods in the space and time for the numerical modeling and compare numerical results with experimental measurements for evaluating the numerical predictions. Numerical results show that the present simulations well reproduce the experimental measurements, in terms of the time-averaged streamwise velocity and secondary velocity vector fields in the bend with submerged vanes. The computed flow fields reveal that the streamwise velocity near the bed along the outer bank at the end section of bend dramatically decrease by one third of mean velocity after the installation of vanes, which support that submerged vanes mitigate the strength of primary secondary flow and are helpful for the channel stability along the outer bank. The flow between the top of vanes and the free surface accelerates and the maximum velocity of free surface flow near the flow impingement along the outer bank increases about 20% due to the installation of submerged vanes. Numerical solutions show the formations of the horseshoe vortices at the front of vanes and the lee wakes behind the vanes, which are responsible for strong local scour around vanes. Additional study on the shapes and arrangement of vanes is required for mitigate the local scour.

Morphological Properties of Binary Blends of Polyolefins Synthesized by Metallocene and Ziegler-Natta Catalysts (Ziegler-Natta와 메탈로센 촉매로 합성된 폴리올레핀 2원 블렌드의 상 형태학)

  • Kwag, Hanjin;Kim, Hak Lim;Choe, Soonja
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.944-948
    • /
    • 1999
  • The morphological properties of four binary blends of polyethylene synthesized by metallocene catalyst(MCPE) and four polyolefins prepared by Ziegler-Natta catalyst have been investigated to interpret the effect of micro-molecular structure on the phase morphology and interfacial behavior; four binary blend systems studied are high density polyethylene(HDPE)-metallocene polyethylene (MCPE), polypropylene(PP)-MCPE, poly(propylene-co-ethylene) (CoPP)-MCPE, and poly(propylene-co-ethylene-co-1-butylene) (TerPP)-MCPE, and they are all phase separated. The HDPE-MCPE blend shows evenly growing homogeneous HDPE domain on the continuous MCPE phase, on the other hand, the rest of three blends show complex heterogeneous phase behavior. The PP-MCPE blend shows that PP and MCPE and completely phase separated and phase inversion takes place at 50% MCPE. The CoPP-MCPE and TerPP-MCPE show enhanced interface due to the same micro-molecular structure of ethylene, and phase inversion takes place at 40% MCPE. In particular, TerPP-MCPE blend shows improved phase morphology between interfaces, and this may be arisen from the comonomer contents in TerPP, which are 1-butene and ethylene having the same chemical structure as that of MCPE. The enhancement of the phase morphology in the TerPP-MCPE blend is correlated with the mechanical and morphological properties. Thus, although the four blend systems are phase separated, the phase morphology suggests that the order of interfacial adhesion strength be HDPE-MCPE > TerPP-MCPE > CoPP-MCPE > PP-MCPE and that micro-molecular structure between constituents be one of major factors giving enhanced interfacial adhesion.

  • PDF

Stress-Strain Characteristics of Weathered Granite Soil in Plane Strain Test (평면변형시험을 이용한 화강풍화토의 응력-변형률 특성)

  • Kim, You-Seong;Lee, Jin-Kwang;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.37-46
    • /
    • 2014
  • Geotechnical structures have been analyzed and constructed in various geometry conditions to maintain their stability in accordance with the characteristics of construction design. Shear strengths are generally obtained from triaxial test to apply to design analysis. Geotechnical structures under strip loading, such as earth dam, embankment, and retaining wall, have the strain in a direction, and plane strain condition. Thus, an approximate shear strengths should be applied for stability analysis suitable to ground condition. When applying shear strengths obtained from triaxial tests for slope stability analysis, the evaluation of it may underestimate the factor of safety because the implementation is not suitable for geometry condition. The paper compares shear strengths obtained from triaxial test and plane strain test based on various relative densities using weathered granite soils. Additionally, yield stress is determined by maximum axial strain 15% in triaxial test because of continuous kinematic hardening, but plane strain test can determine a failure point in critical state to evaluate the shear strengths of soils at the second plastic hardening step. This study proposes to perform an appropriate test for many geotechnical problems with plane strain condition.

Inelastic Behavior of Post-tensioned Wide Beam System with different Reinforcement ratios within Column core (포스트텐션을 도입한 넓은 보에서 기둥 폭 내부에 배근된 보강재의 정착비에 따른 비탄성 거동 평가)

  • Choi Yun-Cheul;Lim Jae-Hyung;Moon Jeong-Ho;Lee Li-Hyung;Kwon Ki-Hyuk
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.85-94
    • /
    • 2005
  • Post-tensioned Precast concrete System(PPS) consists of U-shaped precast wide beams and concrete column. The continuity of beam-column joint is provided with floor concrete cast on the PC shell beam and post-tensioning. The purpose of this paper is to evaluate the response of PPS interior beam-column joint subjected to cyclic lateral loading. To this end, an experimental investigation was performed with three half-scale specimens of interior connection. The design parameters are the amount of beam reinforcement placed inside the joint core. The test results showed that cracks were distributed well without my significant degradation of strength and ductility. Also, it was found that the prestressing may affect to alter the torsional crack angle. And the specimens sufficiently resist up to limiting drift ratio of 0.035 in accordance with the provisional by ACl of acceptance criteria for concrete special moment frames.

A Study on the Elution Mechanism of Ni(II)-Isonitrosoethylacetoacetate Imine Chelates by Reversed Phase High Performance Liquid Chromatography (역상 액체 크로마토그래피에 의한 Ni(II)-Isonitrosoethylacetoacetate Imine 유도체 킬레이트의 용리 메카니즘에 관한 연구)

  • Kim In-Whan;Choi Gang-Yeol;Lee Man-Ho;Kang Chang-Hee;Lee, Won
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.5
    • /
    • pp.697-708
    • /
    • 1992
  • Liquid Chromatographic behavior of Ni(II) in Isonitrosoethylacetoacetate Imine(IEAA-NR), Ni(IEAA-NH)(IEAA-NR)(R = H, CH_3, C-2H_5, n-C_4H_9, C_6H_5-CH_2) chelates were investigated by reversed-phase HPLC on Micropak MCH-5 column using methanol/water as mobile phase. The optimum conditions for the separation of Ni(IEAA-NH)(IEAA-NR) chelates were examined with respect to the effect of the flow rate, sample solvent, mobile phase strength and column temperature. It was fo$und that metal chelates were properly eluted in an acceptable range of capacity factor value(0{\le}logk'{\le}1). The dependence of the logarithm of capacity factor (k') on the volume fraction of water in the binary mobile phase as well as on the liquid-liquid extraction distribution ratio (Dc) in methanol-water/n-alkane extraction system showed the good linearties, and the dependence of the logarithm of capacity factor (k') on the column temperature and on the enthalpy exhibited the good linearties, and the compensation temperature ({\beta}) from the slope was 773.47{\circ}K. It was suggested that the retention of metal chelates was largely affected by the hydrophobic effect.

  • PDF

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law)

  • ;;;Guo, Xun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.101-108
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material. added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into multi phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test. considering equivalent multi-phase similitude law based on seismic damage levels, is developed. In addition, prior to the experiment. it is verified numerically if the algorithm is applicable to the pseudodynamic test.

Evaluation of Silicon Carbide (SiC) for Deep Borehole Disposal Canister (심부시추공 처분용기 재료로서 SiC 세라믹의 적합성 평가)

  • LEE, Minsoo;LEE, Jongyoul;CHOI, Heuijoo;YOO, MalGoBalGaeBitNaLa;JI, Sunghoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.233-242
    • /
    • 2018
  • To overcome the low mechanical strength and corrosion behavior of a carbon steel canister at high temperature condition of a deep borehole, SiC ceramics were studied as an alternative material for the disposal canister. In this paper, a design concept for a SiC canister, along with an outer stainless steel container, was proposed, and its manufacturing feasibility was tested by fabricating several 1/3 scale canisters. The proposed canister can contain one PWR assembly. The outer container was also prepared for the string formation of SiC canisters. Thermal conductivity was measured for the SiC canister. The canister had a good thermal conductivity of above $70W{\cdot}m^{-1}{\cdot}K^{-1}$ at $100^{\circ}C$. The structural stability was checked under KURT environment, and it was found that the SiC ceramics did not exhibit any change for the 3 year corrosion test at $70^{\circ}C$. Therefore, it was concluded that SiC ceramics could be a good alternative to carbon steel in application to deep borehole disposal canisters.