• Title/Summary/Keyword: bedform

Search Result 16, Processing Time 0.021 seconds

Architectural Elements of the Fluvial Deposits of Meander Bends in Midstream of the Yeongsan River, Korea

  • Chung, Gong-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Kim, Ju-Yong
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.809-820
    • /
    • 2005
  • The fluvial sequence developed along the channel margin of meander bends in the midstream of the Yeongsan River consists of channel deposits at the bottom and overbank deposits at the top, and shows a fining-upward trend. The fluvial deposits consist of 7 sedimentary facies, and facies association forms 7 architectural elements. The channel deposits formed as channel bar or point bar. The channel bar deposits consisted of architectural element of gravel bedform were formed by channel lag deposits within the channel; whereas, the channel bar deposits consisted of architectural elements of downcurrent-dipping inclined strata sets, cross-stratified and horizontally stratified sets, and horizontally stratified sets were formed by downstream migration of sand wave or downstream transport of sand by traction current in the upper flow regime conditions within the channel. The point bar deposits consist of architectural elements of down current-dipping inclined strata sets, horizontally stratified sets, cross-stratified and horizontally stratified sets, and laterally inclined and horizontally stratified sets. These architectural elements are thought to have been formed by the combined effects of the migration of sand dunes and the formation of horizontal lamination in the upper flow regime plane bed conditions. The overbank deposits consist of the architectural elements of overbank fine and sand sheet and lens. The overbank fines were formed by settling of mud from slackwater during flooding over floodplain whereas the sand sheet and lens were formed by traction of sands introduced episodically fiom channel to the overbank during flooding.

Development of Technique for Bedform Celerity Estimation using Acoustic sequence map (연속 초음파 영상을 활용한 하상 이동속도 산정 기술 개발)

  • You, Ho Jun;Muste, Marian;Kim, Dong Su
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.230-230
    • /
    • 2021
  • 하상변동은 하천을 효과적으로 활용하고, 하천 내 시설물을 유지관리하기 위한 중요한 정보 중 하나이다. 특히, 최근 4대강 사업으로 인한 하상변동 측정에 대한 수요가 높아짐에 따라 하상변동 측정에 대한 수요가 높아지고 있다. 하상변동 측정하기 위한 방법은 일반적으로 경험식 및 모델링과 실측에 의한 방법으로 구분할 수 있다. 경험식 및 모델링에 의한 방법은 대상 하천과 환경 조건에 따라 결과가 상이하게 나타나며, 실측에 의한 방법은 계측기기를 활용한 지점 단위의 측정에 의존하고 있다. 쉽게 말해 기존의 하상변동 측정은 높은 불확실성 보이며, 많은 인력과 비용, 그리고 시간이 소요되는 한계가 있다. 따라서 본 연구에서는 기존 하상변동 측정의 한계를 극복하고, 하상의 움직임과 특성을 파악할 수 있는 AMV(Acoustic Mapping Velocimetry)를 도입하였다. AMV는 초음파를 이용하여 수심을 측정하는 음향 측심기에서 얻은 측정 결과를 바탕으로 초음파 영상을 생성하고, 영상 분석을 통해 하상의 움직임과 특성을 파악하는 알고리즘이다. 본 연구는 AMV의 일환으로, MBES로 측정된 자료를 기반으로 하상의 움직임을 조사하기 위해 AMV를 적용한 실증적 연구로 시도되었다. 본 연구에서 제시한 기술은, 1) ADCP, MBES를 통해 측정된 수심 정보를 초음파 하상 영상을 변환, 2) 연속 초음파 영상에 LSPIV와 같은 영상 유속계 기술을 도입하여 하상 이동속도를 산정, 3) 연속 초음파 영상에서 하상의 평균하상고, 파장 등의 특성을 파악, 4) Exner 방정식을 활용한 하상변동량 산정으로 구성된다. 본 연구에서 제시된 기술은 사용자의 경험과 판단에 의한 영향을 최소화하여 비교적 낮은 불확실성을 가지며, 비교적 적은 인력과 비용, 시간이 소요되는 경제성을 갖추고 있다. 뿐만 아니라 공간적으로 측정된 초음파 영상을 활용한 많큼 상대적으로 넓은 범위에 적용할 수 있다. 따라서 향후 국내 하상변동 연구에 기여를 할 수 있을 것으로 기대된다.

  • PDF

Experimental study on release of plastic particles from coastal sediments to fluid body (해안 유사에서 수체로의 플라스틱 입자 방출에 관한 실험적 연구)

  • Hwang, Dongwook;Park, Yong Sung
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.2
    • /
    • pp.125-137
    • /
    • 2023
  • In marine environments, plastics have become more abundant due to increasing plastic use. Especially, in coastal regions, particles may remain for a long time, and they interact with flows, wind, sand and human activities. This study aimed thus to observe how plastic debris interacts with and escape from sediments. A series of experiments were conducted in order to gain a better understanding of particle release from coastal sediments into water body. An oscillating water tunnel was built for the experiments, and used to generate oscillatory flows of relatively high Reynolds number and induce sediment transport. Spherical plastic particles of three different sizes was used in lieu of plastic debris in environments. It was observed that release of the particles was directly related to change of bedform, which is in turn determined by the flow condition. Also smaller particles tend to escape the sediment more readily. Critical values for dimensionless parameters are proposed.

Morphological Characteristics and Control Factors of Bedforms in Southern Gyeonggi Bay, Yellow Sea (황해 경기만 남부해역에 발달된 층면구조의 형태적 특징과 제어 요인)

  • Kum, Byung-Cheol;Shin, Dong-Hyeok;Jung, Seom-Kyu;Lee, Yong-Kuk;Oh, Jae-Kyung
    • Journal of the Korean earth science society
    • /
    • v.31 no.6
    • /
    • pp.608-624
    • /
    • 2010
  • Morphological surveys of southern Gyeonggi Bay in the Yellow Sea were conducted for2 years (2006 and 2007) by using multibeam echosounder for investigating the morphological features of bedforms. The subaqueous dunes are shown in various shapes (A~F type) and continuous spectrum of heights and lengths of transverse-to-current dunes on the wide range of sedimentary types. The height-length power-law correlation of dunes is $H_{mean}=0.0393L^{0.8984}$ (r=0.66). The comparison between Flemming (1988)'s correlation and height-length correlation of this study indicates that the subaqueous dunes in the study area are equilibrated in the present hydrological and sedimentary environment. The major controlling factors to thedevelopment and maintenance of subaqueous dunes are both strong tidal currents and the abundant availability of sand. Marine sand mining, artificial impact, changes from the original shape to an irregular shape of the subaqueous dunes with a shorter wavelength and lower height, which has influence on the development and maintenance of bedform because it causes a decrease of the availability of sediment. Water depth and sedimentary characteristics, and othercontrolling factors seem to play limited roles in the development and maintenance of subaqueous dunes.

Numerical Simulations of Cellular Secondary Currents in Open-Channel Flows using Non-linear k-ε Model (비선형 k-ε 모형을 이용한 개수로 흐름에서의 격자형 이차흐름 구조 수치모의)

  • Kang, Hyeongsik;Choi, Sung-Uk;Park, Moonhyeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.643-651
    • /
    • 2008
  • In the present paper, turbulent open-channel flows over longitudinal bedforms are numerically simulated. The Reynolds- averaged Navier-Stokes equations in curvilinear coordinates are solved with the non-linear $k-{\varepsilon}$ model by Speziale( 1987). First, the developed model is applied to rectangular open channel flows for purposes of model validation and parameter sensitivity studies. It is found that the parameters $C_D$ and $C_E$ are important to the intensity of secondary currents and the level of turbulent anisotropy, respectively. It is found that the non-linear $k-{\varepsilon}$ model can hardly reproduce the turbulence anisotropy near the free surface. However, the overall pattern of the secondary currents by the present model is seen to coincide with measured data. Then, numerical simulations of turbulent flows over longitudinal bedforms are performed, and the simulated results are compared with the experimental data in the literature. The simulated secondary currents clearly show upflows and downflows over the ridges and troughs, respectively. The numerical results of secondary currents, streamwise mean velocity, and turbulence structures compare favorably with the measured data. However, it is observed that the secondary currents towards the troughs were significantly weak compared with the measured data.

Transport Paths of Surface Sediment on the Tidal Flat of Garolim Bay, West Coast of Korea (황해 가로림만 조간대 표층퇴적물의 이동경로)

  • Shin, Dong-Hyeok;Yi, Hi-Il;Han, Sang-Joon;Oh, Jae-Kyung;Kwon, Su-Jae
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.2
    • /
    • pp.59-70
    • /
    • 1998
  • Two-dimensional trend-vector model of sediment transport is first tested in the tidal flat of Garolim Bay, mid-western coast of the Korean Peninsula. Three major parameters of surface sediment, i.e., mean grain size, sorting and skewness, are used for defining the best-fitting transport trend-vector on the sand ridge and muddy sand flat. These trend vectors are compared with the real transport directions determined from morphology, field observation and bedforms. The 15 possible cases of trend vectors are calculated from total sediments. In order to find the role of coarse sediments, trend vectors from sediments coarser than < 4.5 ${\phi}$, (sand size) are separately calculated from those of total sediments. As compared with the real directions, the best-fitting transport-vector model is the "case M" of coarse sediments which is the combined trend vectors of two cases: (1) finer, better sorted and more negatively skewed and (2) coarser, better sorted and more positively skewed. This indicates sand-size grains are formed by simpler hydrodynamic processes than total sediments. Transported sediment grains are better sorted than the source sediment grains. This indicates that consistent hydrodynamic energy can make sediment grains better sorted, regardless of complicated mechanisms of sediment transport. Consequently, both transported vector model and real transported direction show that the source of sediments are located outside of bay (offshore Yellow Sea) and in the baymouth. These source sediments are transported through the East Main Tidal Channel adjacent the baymouth. Some are transported from the subtidal zone to the upper tidal flat, but others are transported farther to the south, reaching the south tidal channel in the study area. Also, coarse sediment grains on the sand ridge are originally from the baymouth, and transported through the subtidal zone to the south tidal channel. These coarse sediments are moved to the northeast, but could not pass the small north tidal channel. It is interpreted that the great amount of coarse sediments is returned back to the outside of the bay (Yellow Sea) again through the baymouth during the ebb tide. The distribution of muddy sand in the northeastern part of study area may result from the mixing of two sediment transport mechanisms, i.e., suspension and bedload processes. The landward movement of sand ridge and the formation of the north tidal channel are formed either by the supply of coarse sediments originating from the baymouth and outside of the bay (subaqueous sand ridges including Jang-An-Tae) or by the recent relative sea-level rise.

  • PDF