DOI QR코드

DOI QR Code

Morphological Characteristics and Control Factors of Bedforms in Southern Gyeonggi Bay, Yellow Sea

황해 경기만 남부해역에 발달된 층면구조의 형태적 특징과 제어 요인

  • Received : 2010.09.03
  • Accepted : 2010.10.12
  • Published : 2010.10.31

Abstract

Morphological surveys of southern Gyeonggi Bay in the Yellow Sea were conducted for2 years (2006 and 2007) by using multibeam echosounder for investigating the morphological features of bedforms. The subaqueous dunes are shown in various shapes (A~F type) and continuous spectrum of heights and lengths of transverse-to-current dunes on the wide range of sedimentary types. The height-length power-law correlation of dunes is $H_{mean}=0.0393L^{0.8984}$ (r=0.66). The comparison between Flemming (1988)'s correlation and height-length correlation of this study indicates that the subaqueous dunes in the study area are equilibrated in the present hydrological and sedimentary environment. The major controlling factors to thedevelopment and maintenance of subaqueous dunes are both strong tidal currents and the abundant availability of sand. Marine sand mining, artificial impact, changes from the original shape to an irregular shape of the subaqueous dunes with a shorter wavelength and lower height, which has influence on the development and maintenance of bedform because it causes a decrease of the availability of sediment. Water depth and sedimentary characteristics, and othercontrolling factors seem to play limited roles in the development and maintenance of subaqueous dunes.

황해 경기만 남부 지역에 분포하는 층면구조의 형태특징을 조사하기 위하여, 다중빔음향측심기를 이용한 지형조사가 2년(2006과 2007)에 걸쳐 수행되었다. 경기만 남부의 층면구조는 다양한 퇴적상 위에 연속적인 스펙트럼의 크기와 다양한 형태의 수중사구(A-F type)가 발달하고 있다. 경기만 남부 지역에 발달된 수중사구의 파장과 파고의 관계식은 $H_{mean}=0.0393L^{0.8984}$ (r=0.66)로 나타나고 있다. Flemming(1988)의 파장-파고 관계식과 연구지역의 관계식의 비교를 통해서 조석우세환경인 연구지역에 분포하는 수중사구는 현재 수리적, 퇴적학적 환경에 평형된 상태로 활발하게 발달되어 있고 강한 조류와 풍부한 퇴적물 유용도에 의해서 발달, 유지되고 있음을 보이고 있다. 또한 인위적인 작용인 해사채취는 층면구조를 파장이 짧고 낮은 파고의 불규칙형태로 바꾸며 퇴적물 유용도를 감소시켜 수중사구 발달에 영향을 미치고 있는 것으로 판단된다. 다른 제어요인인 수심과 입도는 경기만 남부지역의 수중사구의 발달과 유지에 크게 기여하지 못한 것으로 판단된다.

Keywords

References

  1. 국립해양조사원, 2003, 조류도(인천항 및 부근). 국립해양조사원, 44 p.
  2. 국립해양조사원. 2006, 선갑도부근 연안해역 해저정보조사 결과보고서. 국립해양조사원, 123 p.
  3. 국립해양조사원, 2008, 황해 아산만 중앙천퇴 거동연구. 국립해양조사원, 110 p.
  4. 김태희, 오희진, 윤용훈, 2004, 경기만 주변 해역의 국지파랑 관측 자료 비교. 한국기상학회지, 40, 485-495.
  5. 박문진, 2008, 화옹(남양만) 방조제에 따른 아산만의 조석 변화. 바다, 13, 320-324.
  6. 박정기, 1990. 한강하구역에서의 점토광물에 대한 연구. 인하대학교 석사학위논문, 59 p.
  7. 방효기, 이치원, 오재경, 1994a, 한반도 서부대륙붕에 발달한 사퇴의 발생기원과 특성. 한국해양학회지, 29, 217-227.
  8. 방효기, 이호영, 장정해, 이치원, 오재경, 1994b, 경기만에 발달한 조류성사퇴의 역사 및 특성. 한국해양학회지, 29, 278-286.
  9. 오재경, 방기영, 2003, 한강 유역과 경기만 퇴적환경의 연계성. 바다, 8, 22-236.
  10. 최동림, 김성렬, 석봉출, 한상준, 1992, 한반도 황해 중부태안반도 근해 사질퇴적물의 이동. 한국해양학회지, 27, 66-77.
  11. 해양수산부, 2006, 해사채취의 친환경적 관리방안 연구(II). 한국해양수산개발원, 950 p.
  12. Aliotta, S. and Perillo, G.M.E., 1987, A sand wave field in the entrance to Bahía Blanca estuary, Argentina. Marine Geology, 76, 1-14. https://doi.org/10.1016/0025-3227(87)90013-2
  13. Allen, J.R.L., 1968, The nature and origin of bed-form hierarchies. Sedimentology, 10, 161-182. https://doi.org/10.1111/j.1365-3091.1968.tb01110.x
  14. Allen, J.R.L., 1982, Simple models for the shape and symmetry of tidal sand waves: (1) Statically stable equilibrium forms. Marine Geology, 48, 31-49. https://doi.org/10.1016/0025-3227(82)90128-1
  15. Amos, C.L. and King, E.L., 1984, Bedforms of the Canadian eastern seaboard: A comparison with global occurrences. Marine Geology, 57, 167-208. https://doi.org/10.1016/0025-3227(84)90199-3
  16. Ashley, G.M., 1990, Classification of large-scale subaqueous bedforms: A new look at an old problem. Journal of Sedimentary Petrology, 60, 160-172. https://doi.org/10.2110/jsr.60.160
  17. Bartholdy, J., Bartholomae, A., and Flemming, B.W., 2002, Grain-size control of large compound flow-transverse bedforms in a tidal inlet of the Danish Wadden Sea. Marine Geology, 188, 391-413. https://doi.org/10.1016/S0025-3227(02)00419-X
  18. Besio, G., Bondeaus, P., Brocchini, M., Hulscher, S.J.M.H., Idier, D., Knappen, M.A.F., Németh, A.A., Roos, P.C., and Virrori, G., 2008, The morphodynamics of tidal sand waves; A model overview. Coastal Engineering, 55, 657-670. https://doi.org/10.1016/j.coastaleng.2007.11.004
  19. Carling, P.A., Golz, E., Orr, H.G., and Radecki-Pawlik, A., 2000, The morphodynamics of fluvial sand dunes in the River Rhine, near Mainz, Germany. I. Sedimentology and morphology. Sedimentology, 47, 227-252. https://doi.org/10.1046/j.1365-3091.2000.00290.x
  20. Chang, T.S., Kim, S-.P., Yoo, D.G. Lee, S.J., and Lee, E.I., 2010, A large mid-channel sand bar in the macrotidal seaway of Asan Bay, Korea; 30 years of morphologic response to anthropogenic impacts. Geo-Marine Letters, 30, 15-22. https://doi.org/10.1007/s00367-009-0146-6
  21. Chu, Y.S., 2000, Sediment dynamics and maintenance processes of linear tidal sand body; Jangan sandbank in the central west coast of Korea. Ph.D. dissertation, Seoul National University, Seoul, Korea, 240 p.
  22. Dalrymple, R.W., 1984, Morphology and internal structure of sandwaves in the Bay of Fundy. Sedimentology, 31, 365-382. https://doi.org/10.1111/j.1365-3091.1984.tb00865.x
  23. Dalrymple, R.W. and Rhodes, R.N., 1995, Estuarine dunes and bars. In Perillo, G.M.E. (ed.), Geomorphology and Sedimentology of Estuarine (Developments in Sedimentology). Elsevier Science, Amsterdam, Netherlands, 359-422.
  24. Dalrymple, R.W., Knight, R.J., and Lambiase, J.J., 1978, Bedforms and their hydraulic stability relationships in a tidal environment, Bay of Fundy, Canada. Nature, 275, 100-104.
  25. Dyer, K.R. and Huntley, D.A, 1999, The origin, classification and modeling of sand bank and ridges. Continental Shelf Research, 19, 1285-1330. https://doi.org/10.1016/S0278-4343(99)00028-X
  26. Ernstsen, V.B., Noormets, R., Winter, C., and Hebbeln, D., 2005, Development of subaqueous barchanoid-shaped dunes due to lateral grain size variability in a tidal inlet channel of the Danish Wadden Sea. Journal of Geophysical Research, 110, F04S08, doi:10.1029/2004JF000180.
  27. Ernstsen, V.B., Noormets, R., Hebbeln, D., Bartholoma, A., and Flemming, B.W., 2006, Precision of high-resolution multibeam echo sounding coupled with high-accuracy positioning in a shallow water coastal environment. Geo-Marine Letters, 26, 141-149. https://doi.org/10.1007/s00367-006-0025-3
  28. Engelund, F. and Fredsoe, J., 1982, Sediment ripples and dunes. Annual Review of Fluid Mechanics, 14, 13-37. https://doi.org/10.1146/annurev.fl.14.010182.000305
  29. Flemming, B.W., 1988, Zur Kassifikation Subaquatischer, Stromungstransversaler Transportkorper. Bochumer geologische und geotechnische Arbeiten, 29, 44-47.
  30. Flemming, B.W., 2000, The role of grain size, water depth and flow velocity as scaling factors controlling the size of subaqueous dunes. In Trentesaus, A. and Garlan, T., Marine Sand wave Dynamics. Proceeding of an International Workshop Held in Lille, France, 23 and 24 March 2000, Univercity of Lille 1, Lille, France, 55-60.
  31. Flemming, B.W. and Davis, R.A.Jr., 1992, Dimensional adjustment of subaqueous dunes in the course of a spring-neap semicycle in a mesotidal backbarrier channel environment (German Wadden Sea, southern Norht Sea). In Flemming, B.W. (ed.), Tidal Clastics 93, Abstract Volume. Courier Forschungsinstitut Sencken berg, 151, 28-30.
  32. Folk, R.L., 1968, Petrology of the sedimentary Rocks. Hemphill, NY, American, 170 p.
  33. Francken, F., Wartel, S., Parker, R., and Taverniers, E., 2004, Factors influencing subaqueous dunes in the Scheldt Estuary. Geo-Marine Letters, 24, 14-21. https://doi.org/10.1007/s00367-003-0154-x
  34. Heaps, W., 2004, Standards for the calibration of multibeam echosounders, are new standards required? Hydrographic Journal, 111, 26-27.
  35. Hoekstra, P., Bell, P., Van Santen, P., Roode, N., Levoy, F., and Whitehous, R., 2004, Bedform migration and bedload transprt on an intertidal shoal. Continental Shelf Research, 24, 1249-1269. https://doi.org/10.1016/j.csr.2004.03.006
  36. International Hydrographic Organization, 1998, IHO Standards for hydrographic Surveys. 4th ed., International Hydrographic Organization Special Publication, 44, 1-23.
  37. Jackson, R.G., 1976, Large scale ripples of the lower Wabash River. Sedimentology, 23, 593-623. https://doi.org/10.1111/j.1365-3091.1976.tb00097.x
  38. Jo, H.R. and Lee, H.J., 2008a, Sediment transport processes over a sand bank in macrotidal Garolim Bay, west coast of Korea. Geosciences Journal, 12, 243-253. https://doi.org/10.1007/s12303-008-0025-6
  39. Jo, H.R. and Lee, H.J., 2008b, Bedform dynamics and sand transport pathways in the Garolim Bay, west coast of Korea. Geosciences Journal, 12, 299-308. https://doi.org/10.1007/s12303-008-0030-9
  40. Jung, W.Y., Suk, B.C., Min, G.H., and Lee, Y.K., 1998, Sedimentary structure and origin of a mud-cored pseudo-tidal sand ridge, eastern Yellow Sea, Korea. Marine Geology, 151, 73-88. https://doi.org/10.1016/S0025-3227(98)00058-9
  41. Knappen, M.A.F. and Hulscher, S.J.M.H., 2002, Regeneration of sand waves after dredging. Coastal Engineering, 46, 277-289. https://doi.org/10.1016/S0378-3839(02)00090-X
  42. Kubicki, A., Manso, F., and Diesing, M., 2007, Morphological evolution of gravel and sand extraction pits, Tromper Wiek, Baltic Sea. Estuarine, Coastal and Shelf Science, 71, 647-656. https://doi.org/10.1016/j.ecss.2006.09.011
  43. Kubicki, A., 2008, Large and very large subaqueous dunes on the continental shelf off southern Vietnam, South China Sea. Geo-Marine Letters, 28, 229-238. https://doi.org/10.1007/s00367-008-0103-9
  44. Kubo, Y.S., Soh, W., Machiyama, H., and Tokuyama, H., 2004, Bedforms produced by the Kuroshio Current passing over the northern Izu Ridge. Geo-Marine Letters, 24, 1-7. https://doi.org/10.1007/s00367-003-0134-1
  45. Li, M.Z. and King, E.L., 2007, Multibeam bathymetric investigations of the morphology of sand ridges and associated bedforms and their relation to storm processes, Sable Island Bank, Scotian Shelf. Marine Geology, 243, 200-228. https://doi.org/10.1016/j.margeo.2007.05.004
  46. McCave, I.N., 1971, Sand waves in the North Sea off the coast of Holland. Marine Geology, 10, 199-255. https://doi.org/10.1016/0025-3227(71)90063-6
  47. Park, S.C. and Yoo, D.G., 1997, Bedform distribution and sand transport trend on a subtidal sand ridge in a macrotidal bay, west coast of Korea. The Journal of the Korea Society of Oceanography, 32, 181-190.
  48. Park, S.C., Lee, B.-H., Han, H.-S., Yoo, D,-G., and Lee, C.-W., 2006, Late quaternary stratigraphy and development of tidal sand ridges in the eastern Yellow Sea. Journal of Sedimentary Research, 76, 1093-1105. https://doi.org/10.2110/jsr.2006.092
  49. Rubin, D.M. and McCulloch, D.S., 1980, Single and superimposed bedforms: A synthesis of Sand Francisco Bay and flume observations. Sedimentary Geology, 29, 207-231.
  50. Southard, J.B., 1971, Presentation of bed configurations in depth-velocity-size diagrams. Journal of Sedimentary Petrology, 41, 903-915.
  51. Stockmann, K., Riethmüller, R., Heineke, M., and Gayer, G., 2009, On the morphological long-term development of dumped material in a low-energetic environment close to the German Baltic coast. Journal of Marine Systems, 75, 409-420. https://doi.org/10.1016/j.jmarsys.2007.04.010
  52. Swift, D.J.P., Parker, G., Lanfredi, N.W., Perillo, G., and Figge, K., 1978, Shoreface-connected sand ridges on American and European shelves-a comparison. Estuarine, Coastal and Shelf Science, 7, 257-273. https://doi.org/10.1016/0302-3524(78)90109-3
  53. Terwindt, J.H.J. and Brouwer, M.J.N., 1986, The behaviour of intertidal sandwaves during neap-spring tide cycles and the relevance for palaeoflow reconstructions. Sedimentology, 33, 1-31. https://doi.org/10.1111/j.1365-3091.1986.tb00742.x
  54. Thornton, E.B., Sallenger, A., conforto Sesto, J., Egley, L., McGee, T., and Parsons, R., 2006, Sand mining impacts on long-term dune erosion in southern Monterery Bay. Marine Geology, 229, 45-58. https://doi.org/10.1016/j.margeo.2006.02.005
  55. Van der Veen, H.H., Hulscher, S.J.M.H., and Knaapen, M.A.F., 2006, Grain size dependency in the occurrence of sand waves. Ocean Dynamics, 56, 228-234. https://doi.org/10.1007/s10236-005-0049-7
  56. Van Landeghem, K.J.J., Wheeler, A.J., Mitchell, N., and Sutton, G., 2009, Variations in sediment wave dimensions across the tidally dominated Irish Sea, NW Europe. Marine Geology, 263, 108-119. https://doi.org/10.1016/j.margeo.2009.04.003
  57. Van Rijn, L.C., 1984, Sediment transport, Part I: bedload transport, Journal of Hydraulic Engineering, 110, 1431-1456 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)
  58. Van Rijn, L.C., 1984, Sediment transport, Part II: suspended load transport. Journal of Hydraulic Engineering, 110, 1613-1641 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)
  59. Van Rijn, L.C., 1984, Sediment transport, Part III: bedforms and alluvial roughness. Journal of Hydraulic Engineering, 110, 1733-1755 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:12(1733)
  60. Wells, D.E. and Monahan, D., 2002, IHO S44 standards for hydrographic surveys and the variety of requirements for bathymetric data. Hydrographic Journal, 104, 9-16.
  61. Wienberg, C., Dannenberg, J., and Hebbeln, D., 2004, The fate of dumped sediments monitored by a high-resolution multibeam Echosounder system, Weser Estuary, German Bight. Geo-marine Letters, 24, 22-31. https://doi.org/10.1007/s00367-003-0155-9
  62. Wienberg, C. and Hebbln, D., 2005, Impact of dumped sediments on subaqueous dunes, outer Weser Estuary, German Bight, southeastern North Sea. Geo-Marine Letters, 25, 43-53. https://doi.org/10.1007/s00367-004-0202-1
  63. Wilcock, P.R., 1992, Experimental investigation of the effect of mixture properties on transport dynamics. In Billi P., Hey R.D., Thorne C.R., and Tacconi P. (eds), Dynamics of gravel-bed rivers. Wiley, Chichester, UK, 109-131.
  64. Yalin, S.M., 1964, Geometric properties of sand waves. Journal of Hydraulic Division, 90, 105-120.
  65. Yalin, S.M., 1977, Mechanics of Sediment Transport. Elsevier, NY, USA, 298 p.

Cited by

  1. Morphological and sedimentological changes of subaqueous dunes in the tide-dominated environment, Gyeonggi Bay vol.38, pp.6, 2014, https://doi.org/10.5916/jkosme.2014.38.6.761
  2. Monitoring of Tidal Sand Shoal with a Camera Monitoring System and its Morphologic Change vol.39, pp.3, 2015, https://doi.org/10.5916/jkosme.2015.39.3.326